【題目】近年來(lái),隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬(wàn)戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長(zhǎng),回收價(jià)值越低,某二手電腦交易市場(chǎng)對(duì)2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對(duì)時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.

(1)若在該市場(chǎng)隨機(jī)選取1個(gè)2018年成交的二手電腦,求其使用時(shí)間在上的概率;

(2)根據(jù)電腦交易市場(chǎng)往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,其中(單位:年)表示折舊電腦的使用時(shí)間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.

由散點(diǎn)圖判斷,可采用作為該交易市場(chǎng)折舊電腦平均交易價(jià)格與使用年限的回歸方程,若,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)在區(qū)間(用時(shí)間組的區(qū)間中點(diǎn)值代表該組的值)上折舊電腦的價(jià)格.

5.5

8.5

1.9

301.4

79.75

385

附:參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):,,.

【答案】(1)0.4 (2) ,預(yù)測(cè)值為.

【解析】

(1)頻率分布直方圖的面積表示相應(yīng)的概率值,進(jìn)而得到結(jié)果;(2)由,即,根據(jù)公式計(jì)算得到相應(yīng)的參數(shù)值,進(jìn)而得到在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值.

(1)由頻率分布直方圖可知一臺(tái)電腦使用時(shí)間在上的概率為:

(2)由,即

,即,所以

根據(jù)(1)中的回歸方程,在區(qū)間上折舊電腦價(jià)格的預(yù)測(cè)值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三棱柱的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是4,的中點(diǎn).中點(diǎn),中點(diǎn),中點(diǎn),

1)計(jì)算異面直線所成角的余弦值

2)求證:平面

3)求證:面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某二手車(chē)直賣(mài)網(wǎng)站對(duì)其所經(jīng)營(yíng)的一款品牌汽車(chē)的使用年數(shù)x與銷(xiāo)售價(jià)格y(單位:萬(wàn)元,輛)進(jìn)行了記錄整理,得到如下數(shù)據(jù):

(I)畫(huà)散點(diǎn)圖可以看出,zx有很強(qiáng)的線性相關(guān)關(guān)系,請(qǐng)求出zx的線性回歸方程(回歸系數(shù)精確到0.01);

(II)y關(guān)于x的回歸方程,并預(yù)測(cè)某輛該款汽車(chē)當(dāng)使用年數(shù)為10年時(shí)售價(jià)約為多少.

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列幾個(gè)命題:①p,則q的否命題是,則;②pq的必要條件,rq的充分不必要條件,則pr的必要不充分條件;③若為真命題,則命題p,q中至多有一個(gè)為真命題;④過(guò)點(diǎn)的直線和圓相切的充要條件是直線斜率為.其中為真命題的有(

A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn),,中有3個(gè)點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)原點(diǎn)的直線與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線軸、軸分別交于兩點(diǎn),設(shè)直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)討論的單調(diào)性;

2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書(shū)、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下面四個(gè)命題:

①“若,則”的逆否命題為“若,則

②“”是“”的充分不必要條件

③命題存在,使得,則:任意,都有

④若為假命題,則均為假命題,其中真命題個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

1)求的取值范圍,并求出圓心坐標(biāo);

2)有一動(dòng)圓的半徑為,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案