8.已知直線l:$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的坐標(biāo)方程為ρ=2cosθ.
(1)將曲線C的極坐標(biāo)方程化為直坐標(biāo)方程;
(2)設(shè)點(diǎn)M的直角坐標(biāo)為(5,$\sqrt{3}$),直線l與曲線C的交點(diǎn)為A,B,求|MA|•|MB|的值.

分析 (1)曲線的極坐標(biāo)方程即ρ2=2ρcosθ,根據(jù)極坐標(biāo)和直角坐標(biāo)的互化公式得x2+y2=2x,即得它的直角坐標(biāo)方程;
(2)直線l的方程化為普通方程,利用切割線定理可得結(jié)論.

解答 解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐標(biāo)方程為(x-1)2+y2=1;
(2)直線l:$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),普通方程為$y=\frac{\sqrt{3}}{3}x-\frac{2\sqrt{3}}{3}$,(5,$\sqrt{3}$)在直線l上,
過(guò)點(diǎn)M作圓的切線,切點(diǎn)為T,則|MT|2=(5-1)2+3-1=18,
由切割線定理,可得|MT|2=|MA|•|MB|=18.

點(diǎn)評(píng) 本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知集合A={1,2,3},B={2,4,5},則集合A∪B中元素的個(gè)數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知拋物線C1:x2=4y的焦點(diǎn)F也是橢圓C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn),C1與C2的公共弦的長(zhǎng)為2$\sqrt{6}$,過(guò)點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C,D兩點(diǎn),且$\overrightarrow{AC}$與$\overrightarrow{BD}$同向.
(Ⅰ)求C2的方程;
(Ⅱ)若|AC|=|BD|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,如果輸入n=3,則輸出的S=( 。
A.$\frac{6}{7}$B.$\frac{3}{7}$C.$\frac{8}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3. 某工件的三視圖如圖所示.現(xiàn)將該工件通過(guò)切削,加工成一個(gè)體積盡可能大的長(zhǎng)方體新工件,并使新工件的一個(gè)面落在原工件的一個(gè)面內(nèi),則原工件材料的利用率為(材料利用率=$\frac{新工件的體積}{原工件的體積}$)( 。
A.$\frac{8}{9π}$B.$\frac{16}{9π}$C.$\frac{4(\sqrt{2}-1)^{3}}{π}$D.$\frac{12(\sqrt{2}-1)^{3}}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若變量x,y滿足約束條件$\left\{\begin{array}{l}{4x+5y≥8}\\{1≤x≤3}\\{0≤y≤2}\end{array}\right.$,則z=3x+2y的最小值為( 。
A.4B.$\frac{23}{5}$C.6D.$\frac{31}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.${∫}_{0}^{2}$(x-1)dx=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-cos2x,x∈R
(1)求函數(shù)f(x)的單調(diào)增區(qū)間
(2)在△ABC中,角A、B、C所對(duì)邊的長(zhǎng)分別是a,b,c,若f(A)=2,C=$\frac{π}{4}$,c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.2014年春節(jié)放假安排:正月初一至初七放假,共7天,某單位安排7位員工值班,每人值班1天,每天安排1人,若甲不在初一值班,乙不在初二值班,且丙和甲在相鄰的兩天值班,則不同的安排方案共有( 。
A.1440種B.1360種C.1282種D.1128種

查看答案和解析>>

同步練習(xí)冊(cè)答案