19.已知拋物線C1:x2=4y的焦點(diǎn)F也是橢圓C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn),C1與C2的公共弦的長為2$\sqrt{6}$,過點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C,D兩點(diǎn),且$\overrightarrow{AC}$與$\overrightarrow{BD}$同向.
(Ⅰ)求C2的方程;
(Ⅱ)若|AC|=|BD|,求直線l的斜率.

分析 (Ⅰ)通過C1方程可知a2-b2=1,通過C1與C2的公共弦的長為2$\sqrt{6}$且C1與C2的圖象都關(guān)于y軸對稱可得$\frac{9}{4{a}^{2}}+\frac{6}{^{2}}=1$,計(jì)算即得結(jié)論;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通過$\overrightarrow{AC}$=$\overrightarrow{BD}$可得(x1+x22-4x1x2=(x3+x42-4x3x4,設(shè)直線l方程為y=kx+1,分別聯(lián)立直線與拋物線、直線與橢圓方程,利用韋達(dá)定理計(jì)算即可.

解答 解:(Ⅰ)由C1方程可知F(0,1),
∵F也是橢圓C2的一個(gè)焦點(diǎn),∴a2-b2=1,
又∵C1與C2的公共弦的長為2$\sqrt{6}$,C1與C2的圖象都關(guān)于y軸對稱,
∴易得C1與C2的公共點(diǎn)的坐標(biāo)為(±$\sqrt{6}$,$\frac{3}{2}$),
∴$\frac{9}{4{a}^{2}}+\frac{6}{^{2}}=1$,
又∵a2-b2=1,
∴a2=9,b2=8,
∴C2的方程為$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{8}$=1;
(Ⅱ)如圖,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵$\overrightarrow{AC}$與$\overrightarrow{BD}$同向,且|AC|=|BD|,
∴$\overrightarrow{AB}$=$\overrightarrow{CD}$,∴x1-x2=x3-x4,
∴(x1+x22-4x1x2=(x3+x42-4x3x4,

設(shè)直線l的斜率為k,則l方程:y=kx+1,
由$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$,可得x2-4kx-4=0,
由韋達(dá)定理可得x1+x2=4k,x1x2=-4,
由$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{y}^{2}}{9}+\frac{{x}^{2}}{8}=1}\end{array}\right.$,得(9+8k2)x2+16kx-64=0,
由韋達(dá)定理可得x3+x4=-$\frac{16k}{9+8{k}^{2}}$,x3x4=-$\frac{64}{9+8{k}^{2}}$,
又∵(x1+x22-4x1x2=(x3+x42-4x3x4
∴16(k2+1)=$\frac{1{6}^{2}{k}^{2}}{(9+8{k}^{2})^{2}}$+$\frac{4×64}{9+8{k}^{2}}$,
化簡得16(k2+1)=$\frac{1{6}^{2}×9({k}^{2}+1)}{(9+8{k}^{2})^{2}}$,
∴(9+8k22=16×9,解得k=±$\frac{\sqrt{6}}{4}$,
即直線l的斜率為±$\frac{\sqrt{6}}{4}$.

點(diǎn)評 本題是一道直線與圓錐曲線的綜合題,考查求橢圓方程以及直線的斜率,涉及到韋達(dá)定理等知識(shí),考查計(jì)算能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f(f($\frac{5}{6}$))=4,則b=( 。
A.1B.$\frac{7}{8}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是( 。
A.若a1+a2>0,則a2+a3>0B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2,則a2$>\sqrt{{a}_{1}{a}_{3}}$D.若a1<0,則(a2-a1)(a2-a3)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某輛汽車每次加油都把油箱加滿,下表記錄了該車相鄰兩次加油時(shí)的情況
加油時(shí)間加油量(升)加油時(shí)的累計(jì)里程(千米)
2015年5月1日1235000
2015年5月15日4835600
注:“累計(jì)里程”指汽車從出廠開始累計(jì)行駛的路程,在這段時(shí)間內(nèi),該車每100千米平均耗油量為 ( 。
A.6升B.8升C.10升D.12升

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,則z=2x-y的最小值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$不平行,向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$平行,則實(shí)數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則下列結(jié)論成立的是( 。
A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l:$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的坐標(biāo)方程為ρ=2cosθ.
(1)將曲線C的極坐標(biāo)方程化為直坐標(biāo)方程;
(2)設(shè)點(diǎn)M的直角坐標(biāo)為(5,$\sqrt{3}$),直線l與曲線C的交點(diǎn)為A,B,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)A是由有限個(gè)正整數(shù)組成的集合,若存在兩個(gè)集合B,C滿足:
①B∩C=∅;
②B∪C=A;
③B的元素之和等于C的元素之和.
則稱集合A“可均分”,否則稱A“不可均分”.
(Ⅰ)判斷集合M={1,3,9,27,…,3n}(n∈N*)是否“可均分”,并說明理由;
(Ⅱ)求證:集合A={2015+1,2015+2,…,2015+93}“可均分”;
(Ⅲ)求出所有的正整整k,使得A={2015+1,2015+2,…,2015+k}“可均分”.

查看答案和解析>>

同步練習(xí)冊答案