【題目】已知函數(shù).
(1)當(dāng)時(shí),
①若曲線與直線相切,求的值;
②若曲線與直線有公共點(diǎn),求的取值范圍.
(2)當(dāng)時(shí),不等式對于任意正實(shí)數(shù)恒成立,當(dāng)取得最大值時(shí),求的值.
【答案】(1)①1 ,②;(2)1,-1.
【解析】
當(dāng)時(shí),,所以,
① 設(shè)切點(diǎn)為,列出方程組,即可求得,得到答案
②由題意,得方程有正實(shí)數(shù)根,即方程有正實(shí)數(shù)根,記,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最小值,即可求解的取值范圍
由題意得,當(dāng)時(shí),對于任意正實(shí)數(shù)恒成立,所以當(dāng)時(shí),對于任意正實(shí)數(shù)恒成立,由知,,進(jìn)而得到,
,,……,得到當(dāng)時(shí),,進(jìn)而得到對于任意正實(shí)數(shù)恒成立,再利用二次函數(shù)的性質(zhì),即可得到結(jié)論
(1)解:當(dāng)時(shí),,所以.
①設(shè)切點(diǎn)為,則
由②③得,
由①得代入④得,
所以.
②由題意,得方程有正實(shí)數(shù)根,
即方程有正實(shí)數(shù)根,
記,令,
當(dāng)時(shí),;當(dāng)時(shí),;
所以在上為減函數(shù),在上為增函數(shù);
所以.
若,則,不合;
若,由①知適合;
若,則,又,
所以,由零點(diǎn)存在性定理知在上必有零點(diǎn).
綜上,c的取值范圍為.
(2)由題意得,當(dāng)時(shí),對于任意正實(shí)數(shù)x恒成立,
所以當(dāng)時(shí),對于任意正實(shí)數(shù)x恒成立,
由(1)知,,
兩邊同時(shí)乘以x得,①
兩邊同時(shí)加上得,②,
所以(*),當(dāng)且僅當(dāng)時(shí)取等號.
對(*)式重復(fù)以上步驟①②可得,,
進(jìn)而可得,,,……,
所以當(dāng),時(shí),,當(dāng)且僅當(dāng)時(shí)取等號.
所以.
當(dāng)取最大值1時(shí),
令上式中得, ,所以,
所以對于任意正實(shí)數(shù)x恒成立,
即對于任意正實(shí)數(shù)x恒成立,
所以,所以函數(shù)的對稱軸,
所以,即,所以,.
又由,兩邊同乘以x2得,,
所以當(dāng),時(shí),也恒成立,
綜上,得,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,,,分別在,上,,現(xiàn)將四邊形沿折起,使平面平面.
(Ⅰ)若,在折疊后的線段上是否存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說明理由;
(Ⅱ)當(dāng)三棱錐的體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對一塊長米,寬米的矩形場地ABCD進(jìn)行改造,點(diǎn)E為線段BC的中點(diǎn),點(diǎn)F在線段CD或AD上(異于A,C),設(shè)(單位:米),的面積記為(單位:平方米),其余部分面積記為(單位:平方米).
(1)求函數(shù)的解析式;
(2)設(shè)該場地中部分的改造費(fèi)用為(單位:萬元),其余部分的改造費(fèi)用為(單位:萬元),記總的改造費(fèi)用為W單位:萬元),求W最小值,并求取最小值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大;
(3)若G為C1C中點(diǎn),求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為4的正方形,側(cè)面為正三角形且二面角為.
(Ⅰ)設(shè)側(cè)面與的交線為,求證:;
(Ⅱ)設(shè)底邊與側(cè)面所成角的為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司一年需購買某種原料400噸,設(shè)公司每次都購買噸,每次運(yùn)費(fèi)為4萬元,一年的總存儲費(fèi)用為萬元.
(1)要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最小,則每次購買多少噸?
(2)要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和不超過200萬元,則每次購買量在什么范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017高考特別強(qiáng)調(diào)了要增加對數(shù)學(xué)文化的考查,為此某校高三年級特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對整個(gè)高三年級的學(xué)生進(jìn)行了測試.現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績,按照成績?yōu)?/span>, ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).
(1)求頻率分布直方圖中的的值,并估計(jì)所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)若高三年級共有2000名學(xué)生,試估計(jì)高三學(xué)生中這次測試成績不低于70分的人數(shù);
(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機(jī)抽取3人參加這次考試的考后分析會,試求兩組中至少有1人被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若動(dòng)點(diǎn)在直線上,動(dòng)點(diǎn)Q在直線上,記線段的中點(diǎn)為
,且,則的取值范圍為 ________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照國家質(zhì)量標(biāo)準(zhǔn):某種工業(yè)產(chǎn)品的質(zhì)量指標(biāo)值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設(shè)備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標(biāo)值進(jìn)行檢測.表1是甲套設(shè)備的樣本頻數(shù)分布表,圖1是乙套設(shè)備的樣本頻率分布直方圖.
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
表1:甲套設(shè)備的樣本頻數(shù)分布表
(1)將頻率視為概率,若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?
(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為這種產(chǎn)品的質(zhì)量指標(biāo)值與甲乙兩套設(shè)備的選擇有關(guān):
甲套設(shè)備 | 乙套設(shè)備 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(3)根據(jù)表和圖,對甲、乙兩套設(shè)備的優(yōu)劣進(jìn)行比較.參考公式及數(shù)據(jù):x2=
P(Х2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com