分析 (1)利用二倍角公式,化簡(jiǎn)函數(shù)解析式,結(jié)合ω=2,可得f(x)的最小正周期;
(2)若f(x)的最大值為3,則1+m+1=3,解得m值.
解答 解:(1)∵函數(shù)f(x)=(sinx+cosx)2+m=sin2x+cos2x+2sinxcosx+m=sin2x+m+1,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π;
(2)當(dāng)sin2x=1時(shí),函數(shù)取最大值1+m+1=3,
解得:m=1.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象和性質(zhì),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${log_3}4>1>{log_{\frac{1}{3}}}10$ | B. | ${log_{\frac{1}{3}}}10>1>{log_3}4$ | ||
C. | ${log_3}4>{log_{\frac{1}{3}}}10>1$ | D. | ${log_{\frac{1}{3}}}10>{log_3}4>1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1,π | B. | -3,2π | C. | -1,2π | D. | -3,π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com