【題目】設(shè)為正整數(shù),若兩個項數(shù)都不小于的數(shù)列,滿足:存在正數(shù),當(dāng)時,都有,則稱數(shù)列是“接近的”.已知無窮等比數(shù)列滿足,無窮數(shù)列的前項和為,,且,.

1)求數(shù)列通項公式;

2)求證:對任意正整數(shù),數(shù)列是“接近的”;

3)給定正整數(shù),數(shù)列,(其中)是“接近的”,求的最小值,并求出此時的(均用表示).(參考數(shù)據(jù):

【答案】(1)(2)證明見解析(3)的最小值,此時

【解析】

1)設(shè)等比數(shù)列公比為,由,可求得首項和公比,進而求得通項;
2)只需證明成立,即可得證;
3)由題設(shè)可求得,根據(jù)定義進而得到都成立,再構(gòu)造函數(shù)求解即可.

1)設(shè)等比數(shù)列公比為,由,解得,故.

2.

對任意正整數(shù),當(dāng),且時,有,

,即成立,

故對任意正整數(shù),數(shù)列,是“接近的”.

3)由,得到,且,

從而,于是.

當(dāng)時,,,解得,

當(dāng)時,,又,

整理得,所以,因此數(shù)列為等差數(shù)列.

又因為,則數(shù)列的公差為1,故.

根據(jù)條件,對于給定正整數(shù),當(dāng)時,都有

成立,

①對都成立.

考察函數(shù),,令,

,當(dāng)時,,所以上是增函數(shù).

又因為,所以當(dāng)時,,即,

所以上是增函數(shù).

注意到,,

故當(dāng)時,的最大值為,

的最小值為.

欲使?jié)M足①的實數(shù)存在,必有,即,

因此的最小值,此時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機銷量約占,電視機銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 電視機銷量最大的是第4季度

B. 電冰箱銷量最小的是第4季度

C. 電視機的全年銷量最大

D. 電冰箱的全年銷量最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為矩形,,,為線段上的動點.

1)若為線段的中點,求證:平面;

2)若三棱錐的體積記為,四棱錐的體積記為,當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點.若曲線上存在兩點,使為正三角形,則稱型曲線.給定下列三條曲線:

;

其中型曲線的個數(shù)是

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列.如果數(shù)列滿足, ,其中,則稱的“衍生數(shù)列”.

(Ⅰ)若數(shù)列的“衍生數(shù)列”是,求

(Ⅱ)若為偶數(shù),且的“衍生數(shù)列”是,證明:的“衍生數(shù)列”是;

(Ⅲ)若為奇數(shù),且的“衍生數(shù)列”是,的“衍生數(shù)列”是,….依次將數(shù)列,,,…的第項取出,構(gòu)成數(shù)列 .證明:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足;數(shù)列滿足;數(shù)列為公比大于1的等比數(shù)列,且,為方程的兩個不相等的實根.

1)求數(shù)列和數(shù)列的通項公式;

2)將數(shù)列中的第項,第項,第項,……,第項,……刪去后剩余的項按從小到大的順序排成新數(shù)列,求數(shù)列的前2013項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時,令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個零點,判斷是否為的零點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點都在雙曲線上,直線軸相交于點,設(shè)坐標(biāo)原點為.

1)求雙曲線的方程,并求出點的坐標(biāo)(用表示);

2)設(shè)點關(guān)于軸的對稱點為,直線軸相交于點.問:在軸上是否存在定點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.

3)若過點的直線與雙曲線交于兩點,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時,解不等式;

2)若關(guān)于的方程的解集中恰好有一個元素,求實數(shù)的值;

3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案