【題目】在一個長方體的容器中,里面裝有少量的水,現(xiàn)在將容器繞著其底部的一條棱傾斜.
(1)在傾斜的過程中,水面的形狀不斷變化,可能是矩形,也可能變成不是矩形的平行四邊形,對嗎?
(2)在傾斜的過程中,水的形狀也不斷變化,可以是棱柱,也可能變?yōu)槔馀_或棱錐,對嗎?
(3)如果傾斜時,不是繞著底部的一條棱,而是繞著其底面的一個頂點,上面的第(1)問和第(2)問對不對?
【答案】(1)可以是矩形,但不可能是其他非矩形的平行四邊形(2)水比較少時,是三棱柱,水多時,可能是四棱柱,或五棱柱;但不可能是棱臺或棱錐.(3)(1)對,(2)不對.
【解析】
根據(jù)繞著棱旋轉和繞著點旋轉的特點,將問題轉化為長方體被相應平面所截形成的截面形狀.
(1)不對.水面的形狀就是用一個與棱(長方體容器傾斜時固定不動的棱)平行的平面截長方體時截面的形狀,因而可以是矩形,但不可能是其他非矩形的平行四邊形.
(2)不對.水的形狀就是用與棱(長方體容器傾斜時固定不動的棱)平行的平面將長方體截去一部分后,剩余部分的幾何體,此幾何體是棱柱,水比較少時,是三棱柱,水多時,可能是四棱柱,或五棱柱;但不可能是棱臺或棱錐.
(3)用任意一個平面去截長方體,其截面形狀可以是三角形,四邊形,五邊形,六邊形,因而水面的形狀可以是三角形,四邊形,五邊形,六邊形;水的形狀可以是棱錐,棱柱,但不可能是棱臺.故(1)對,(2)不對.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)現(xiàn)有一個直角梯形水產(chǎn)養(yǎng)殖區(qū)ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在點P處有一燈塔(如圖),且點P到BC,CD的距離都是1200m,現(xiàn)擬將養(yǎng)殖區(qū)ACD分成兩塊,經(jīng)過燈塔P增加一道分隔網(wǎng)EF,在△AEF內試驗養(yǎng)殖一種新的水產(chǎn)品,當△AEF的面積最小時,對原有水產(chǎn)品養(yǎng)殖的影響最。OAE=d.
(1)若P是EF的中點,求d的值;
(2)求對原有水產(chǎn)品養(yǎng)殖的影響最小時的d的值,并求△AEF面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,對于定義域內的任意實數(shù),有成立,且時,.
(1)當時,求函數(shù)的最大值;
(2)當時,求函數(shù)的最大值;
(3)已知(實數(shù)),求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖表示一位騎自行車者和一位騎摩托車者在相距的兩城鎮(zhèn)間旅行的函數(shù)圖象,由圖,可知騎自行車者用了,沿途休息了,騎摩托車者用了,根據(jù)這個圖象,提出關于這兩個旅行者的如下信息:
①騎自行車者比騎摩托車者早出發(fā),晚到;
②騎自行車者是變速運動,騎摩托者是勻速運動;
③騎摩托車者在出發(fā)了后,追上了騎自行車者.
其中正確信息的序號是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.是自然對數(shù)的底數(shù).
(1)若曲線在處的切線方程為.求實數(shù)的值;
(2)① 若時,函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍;
② 若,.若對一切正實數(shù)恒成立,求實數(shù)的最大值(用表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù),設函數(shù)
(1)當時,求函數(shù)的單調區(qū)間;
(2)對任意均有 求的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知無窮數(shù)列{an}(an∈Z)的前n項和為Sn,記S1,S2,…,Sn中奇數(shù)的個數(shù)為bn.
(1)若an=n,請寫出數(shù)列{bn}的前5項;
(2)求證:“a1為奇數(shù),ai(i=2,3,4,…)為偶數(shù)”是“數(shù)列{bn}是單調遞增數(shù)列”的充分不必要條件;
(3)若ai=bi,i=1,2,3,…,求數(shù)列{an}的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com