已知數(shù)列{an}時(shí)公差不為零的等差數(shù)列,a1=1,a1,a3,a9成等比數(shù)列,則數(shù)列{an2an}的前n項(xiàng)和sn=
 
考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由條件建立方程組即可求出數(shù)列{an}的通項(xiàng)公式,然后根據(jù)錯(cuò)位相減法即可求數(shù)列{an2an}的前n項(xiàng)和Sn
解答: 解:∵a1=1,a1,a3,a9成等比數(shù)列,
∴a1a9=
a
2
3
,
即1+8d=(1+2d)2,
∴4d=4d2,
解得d=1,
∴an=1+n-1=n,an2an=n•2n,
則sn=1?2+2?22+???+n?2n   ①,
2Sn=1?22+2?23+???+n?2n+1,②,
兩式相減得:
-Sn=2+22+???+2n-n?2n+1=
2(1-2n)
1-2
-n?2n+1=(1-n)?2n+1-2

Sn=(n-1)?2n+1+2,
故答案為:(n-1)?2n+1+2.
點(diǎn)評(píng):本題主要考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的計(jì)算,以及利用錯(cuò)位相減法進(jìn)行求和的內(nèi)容,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}同時(shí)滿足下列三個(gè)條件:
(1)a1+a6=11 (2)a3a4=
32
9
  (3)三個(gè)數(shù)
2
3
a2, 
a
2
3
, a4+
4
9
成等差數(shù)列.
試求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了檢測(cè)某種產(chǎn)品的質(zhì)量,抽取了一個(gè)容量為100的樣本,數(shù)據(jù)的分組及頻率如下表:
分組 頻數(shù) 頻率
[10.75,10.85) 3 0.03
[10.85,10.95) 9 0.09
[10.95,11.05) 13 m
[11.05,11.15) 16 0.16
[11.15,11.25) a n
[11.25,11.35) 20 0.20
[11.35,11.45) b 0.07
[11.45,11.55) 4 0.04
[11.55,11.65) 2 0.02
合計(jì) 100 1.00
(1)求出上面頻率分布表中的a,b,m,n的值;
(2)根據(jù)上表畫(huà)出頻率分布直方圖;
(3)★根據(jù)上表和圖,估計(jì)數(shù)據(jù)落在[10.95,11.35)范圍內(nèi)的頻率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)變量X的分布列如下表,且E(X)=1.1,則D(X)=
 

X 0 1 x
P
1
5
p
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
x-y+5≥0
x+y≥0
x-3≤0
,則目標(biāo)函數(shù)z=2y-x的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙、丁四個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到每個(gè)公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=
1
81
,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)(x∈R)滿足f(x-1)=f(x+1),且x∈[-1,1]時(shí),f(x)=|x|,函數(shù)g(x)=
sinπx(x>0)
-
1
x
  (x<0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點(diǎn)個(gè)數(shù)為( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b是方程x2+(cotθ)x-cosθ=0的兩個(gè)不等實(shí)根,那么過(guò)點(diǎn)A(a,a2)和B(b,b2)的直線與圓x2+y2=1的位置關(guān)系是( 。
A、相離B、相切
C、相交D、隨θ的值而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線
3
x-y+2m=0
與圓x2+y2=n2相切,其中m,n∈N*,且n-m<5,則滿足條件的有序?qū)崝?shù)對(duì)(m,n)共有的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案