如圖,在四面體ABCD中,E,F(xiàn)分別為AB,CD的中點(diǎn),過EF任作一個(gè)平面α分別與直線BC,AD相交于點(diǎn)G,H,則下列結(jié)論正確的是
 

①對(duì)于任意的平面α,都有直線GF,EH,BD相交于同一點(diǎn);
②存在一個(gè)平面α0,使得GF∥EH∥BD;
③存在一個(gè)平面α0,使得點(diǎn)G在線段BC上,點(diǎn)H在線段AD的延長(zhǎng)線上;
④對(duì)于任意的平面α,都有S△EFG=S△EFH
考點(diǎn):命題的真假判斷與應(yīng)用,棱錐的結(jié)構(gòu)特征
專題:簡(jiǎn)易邏輯
分析:①取AD的中點(diǎn)H,BC的中點(diǎn)G,則EGFH在一個(gè)平面內(nèi),此時(shí)直線GF∥EH∥BD;
②由①即可判斷出;
③不存在一個(gè)平面α0,使得點(diǎn)G在線段BC上,點(diǎn)H在線段AD的延長(zhǎng)線上;
④分別取AC、BD的中點(diǎn)M、N,則BC∥平面MENF,AD∥平面MENF,且AD與BC到平面MENF的距離相等,即可判斷出.
解答: 解:①取AD的中點(diǎn)H,BC的中點(diǎn)G,則EGFH在一個(gè)平面內(nèi),此時(shí)直線GF∥EH∥BD,因此不正確;
②取AD的中點(diǎn)H,BC的中點(diǎn)G,則EGFH在一個(gè)平面內(nèi),取為平面α0,使得GF∥EH∥BD,正確;
③不存在一個(gè)平面α0,使得點(diǎn)G在線段BC上,點(diǎn)H在線段AD的延長(zhǎng)線上;
④分別取AC、BD的中點(diǎn)M、N,則BC∥平面MENF,AD∥平面MENF,且AD與BC到平面MENF的距離相等,因此對(duì)于任意的平面α,都有S△EFG=S△EFH
綜上可知:只有②④正確.
故答案為:②④.
點(diǎn)評(píng):本題考查了線面平行的判定與性質(zhì)、共面公理、三角形的中位線定理,考查了推理能力和空間想象能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足Sn2=an(Sn-
1
2
).
(1)證明:{
1
Sn
}為等差數(shù)列,并求an;
(2)設(shè)bn=
Sn
2n+1
,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)是否存在自然數(shù)m,使得對(duì)任意n∈N*,都有Tn
1
4
(m-8)成立?若存在求出m的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量
m
=(
2
cosB,
2
sinB),向量
n
=(cosc,-sinc),若|
m
-
n
|=
5

(1)求角A的大小;
(2)若a=4
2
,且△ABC的面積為16,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=0,且
1
1-an+1
-
1
1-an
=1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1-
an+1
n
,記Sn=b1+b2+b3+…+bn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ服從正態(tài)分布N(3,σ2),P(ξ≤2)=0.3,則P(ξ≥4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2(an-1),則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n為正整數(shù),由數(shù)列1,2,3,…n分別求相鄰兩項(xiàng)的和,得到一個(gè)有n-1項(xiàng)的新數(shù)列;1+2,2+3,3+4,…(n-1)+n即3,5,7,…2n-1.對(duì)這個(gè)新數(shù)列繼續(xù)上述操作,這樣得到一系列數(shù)列,最后一個(gè)數(shù)列只有一項(xiàng).(1)記原數(shù)列為第一個(gè)數(shù)列,則第三個(gè)數(shù)列的第2項(xiàng)是
 
(2)最后一個(gè)數(shù)列的項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
,
b
,
c
.有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
④(
a
b
c
=
a
b
c

其中真命題的序號(hào)為
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球面上的點(diǎn)滿足方程(x-1)2+(y+2)2+(z-3)2=9,點(diǎn)A(-3,2,5),則球面上的點(diǎn)與點(diǎn)A距離的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案