以橢圓
x2
16
+
y2
4
=1內(nèi)的點M(1,1)為中點的弦所在直線方程為
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)以P(1,1)為中點的弦與橢圓交于A(x1,y1),B(x2,y2),利用點差法求解即可.
解答: 解:設(shè)以點P(1,1)為中點的弦與橢圓交于A(x1,y1),B(x2,y2),
則x1+x2=2,y1+y2=2,
分別把A(x1,y1),B(x2,y2)代入橢圓方程
x2
16
+
y2
4
=1,
可得
x12
16
+
y12
4
=1
x22
16
+
y22
4
=1

∴(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
∴(x1-x2)+4(y1-y2)=0,
∴k=
y2-y1
x2-x1
=-
1
4
,
∴點P(1,1)為中點的弦所在直線方程為y-1=-
1
4
(x-1),
整理,得:x+4y-5=0.
故答案為:x+4y-5=0.
點評:本題主要考查了橢圓的簡單性質(zhì),以及直線方程的求法的運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC,點P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+
3
cos2x-m,若f(x)的最大值為1.
(1)求m的值,并求f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A、B、C所對的邊是a、b、c,若f(B)=
3
-1,且
3
a=b+c,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x,g(x)=-x2+2x+b,(b∈R),h(x)=f(x)-
1
f(x)

(1)判斷h(x)的奇偶性并證明.
(2)對任意x∈[1,2],都存在x1,x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求實數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的對稱軸方程為:x=1,設(shè)向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=( cos2x,1),
d
=(2,1).
(1)分別求
a
b
c
d
的取值范圍;
(2)當(dāng)x∈[0,π]時,求不等式f(
a
b
)>f(
c
d
)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,1),
b
=(1,cosx),-
π
2
<x<
π
2

(1)若x=-
π
3
時,求
a
b
的值.;
(2)求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求所有實多項式f和g,使得對所有x∈R,有:(x2+x+1)f(x2-x+1)=(x2-x+1)g(x2+x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較下列各組中兩個值的大小:
(1)ln0.3,ln2;
(2)loga3.1,loga5.2(a>0,且a≠1);
(3)log30.2,log40.2;
(4)log3π,logπ3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為1的正方體的8個頂點都在同一個球面上,則此球的表面積為
 

查看答案和解析>>

同步練習(xí)冊答案