7.設(shè)一電路中電流i關(guān)于時(shí)間t的變化率為$\frac{di}{dt}$=4t-0.6t2,若t=0,i=2A,求電流i關(guān)于時(shí)間t的函數(shù).

分析 由題意f(t)=∫(4t-0.6t2)dt,計(jì)算不定積分,然后利用待定系數(shù)法求c.

解答 解:由題意,f(t)=∫(4t-0.6t2)dt=2t2-0.2t3+c,當(dāng)t=0,i=2A,所以c=2;
所以f(t)=2t2-0.2t3+2.

點(diǎn)評(píng) 本題考查了微積分基本定理的運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)點(diǎn)P(2,-1)作圓(x-1)2+y2=25的弦AB,則弦長(zhǎng)AB的最短時(shí)AB所在的直線方程方程是( 。
A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.與向量$\overrightarrow{a}$=(2,2)方向相同的單位向量是( 。
A.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)B.(1,1)C.(-1,-1)D.($\frac{1}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.計(jì)算:sin86°cos34°-cos86°sin214°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.用五點(diǎn)作圖法作出函數(shù)y=cos(2x-$\frac{π}{3}$),x∈[0,π]的圖象,并寫出其單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為4,左右焦點(diǎn)分別為F1,F(xiàn)2,且經(jīng)過(guò)點(diǎn)(-3,2$\sqrt{6}$).
(1)求雙曲線C的方程;
(2)若P為雙曲線上的一點(diǎn),且|PF1||PF2|=8,求△PF1F2的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,并且對(duì)于所有的正整數(shù)n,an與1的等差中項(xiàng)等于Sn與1的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式bn=ln(1+$\frac{1}{{a}_{n}}$),記Tn是{bn}的前n項(xiàng)和,試比較Tn與$\frac{1}{2}$lnan+1的大小并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列說(shuō)法不正確的是(  )
A.空間中,一組對(duì)邊平行且相等的四邊形是一定是平行四邊形
B.同一平面的兩條垂線一定共面
C.三角形一定是平面圖形
D.過(guò)一條直線有且只有一個(gè)平面與已知平面垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知:函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2
(1)求函數(shù)f(x)的最小正周期及當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的值域.;
(2)若y=f(x)的圖象在[0,m]上恰好有兩個(gè)點(diǎn)的縱坐標(biāo)為1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案