【題目】對于三次函數(shù),定義是的導函數(shù)的導函數(shù),經(jīng)過討論發(fā)現(xiàn)命題:“一定存在實數(shù),使得成立”為真,請你根據(jù)這一結(jié)論判斷下列命題:
①一定存在實數(shù),使得成立;②一定存在實數(shù),使得成立;③若,則;④若存在實數(shù),且滿足:,則函數(shù)在上一定單調(diào)遞增,所有正確的序號是( )
A. ①② B. ①③ C. ②③ D. ②④
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.
(3)估計居民月用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投人成本萬元.當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,萬元,每千件產(chǎn)品的售價為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.
(1)寫出年利潤萬元關(guān)于千件的函數(shù)關(guān)系式;
(2)當年產(chǎn)量為多少千件時該廠當年的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于的一元二次方程
(1)若,是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率.
(2)若,,求方程沒有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB ,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點.
(1)求證:EF∥平面PCD;
(2)求直線DP與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校300名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘).
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 34 | 51 | 59 | 66 | 65 | 25 |
將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 120 | 40/p> | |
合計 |
(2)通過計算判斷,是否能在犯錯誤的概率不超過0.05的前提下認為“鍛煉達標”與性別有關(guān)?
參考公式:,其中.
臨界值表
P() | 0.10 | 0.05 | 0.025 | 0.010 |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)任意向軸上這一區(qū)間內(nèi)投擲一個點,則該點落在區(qū)間內(nèi)的概率是多少?
(2)已知向量,,若,分別表示一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)均為大于1的整數(shù).證明:存在個不被整除的整數(shù),若將它們?nèi)我夥殖蓛山M,則總有一組有若干個數(shù)的和被整除.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com