合計(jì)(2)通過計(jì)算判斷.是否能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“鍛煉達(dá)標(biāo) 與性別有關(guān)?參考公式:.其中.臨界值表P()0.100.050.0250.0102.7063.8415.0246.635">
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校300名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘).
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 34 | 51 | 59 | 66 | 65 | 25 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 120 | 40/p> | |
合計(jì) |
(2)通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
參考公式:,其中.
臨界值表
P() | 0.10 | 0.05 | 0.025 | 0.010 |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)見解析(2)能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān).
【解析】
(1)根據(jù)調(diào)查表結(jié)合列聯(lián)表中的數(shù)據(jù)完成.
(2)根據(jù)列聯(lián)表的數(shù)據(jù),代入,求得, 再與臨界表對(duì)照下結(jié)論.
(1)由調(diào)查表得:
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | 90 | 50 | 140 |
女 | 120 | 40 | 160 |
合計(jì) | 210 | 90 | 300 |
(2),
所以,能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程;
(2)求經(jīng)過直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點(diǎn),且平行于直線x+2y-3=0的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是亞太區(qū)域國(guó)家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅(jiān)持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會(huì)議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對(duì)會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人參與會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于三次函數(shù),定義是的導(dǎo)函數(shù)的導(dǎo)函數(shù),經(jīng)過討論發(fā)現(xiàn)命題:“一定存在實(shí)數(shù),使得成立”為真,請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①一定存在實(shí)數(shù),使得成立;②一定存在實(shí)數(shù),使得成立;③若,則;④若存在實(shí)數(shù),且滿足:,則函數(shù)在上一定單調(diào)遞增,所有正確的序號(hào)是( )
A. ①② B. ①③ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(sin x,cos x),=(cos x,cos x),=(2,1).
(1)若∥,求sin xcos x的值;
(2)若0<x≤,求函數(shù)f(x)=·的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀情況,現(xiàn)采用分層隨機(jī)抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們的課外閱讀時(shí)間,然后按初中學(xué)生和高中學(xué)生分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:h)分為5組:,,,,,并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30h的學(xué)生人數(shù)為_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長(zhǎng)的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長(zhǎng),根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因?yàn)?/span>,則.
(2)由正弦定理
∴, , ,
∴周長(zhǎng)
∵,∴
∴當(dāng)即時(shí)
∴當(dāng)時(shí), 周長(zhǎng)的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地統(tǒng)計(jì)局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。
(1)求居民月收入在[3000,3500)內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@10000中用分層抽樣的方法抽出100人做進(jìn)一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com