【題目】在平面直角坐標系中,直線l的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=4sinθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點P為曲線C上的動點,求P到直線l的距離的最小值.
【答案】(Ⅰ),.(Ⅱ).
【解析】
(Ⅰ)消去參數(shù)可得直線的普通方程y=x-4.極坐標方程化為直角坐標方程可得曲線C的直角坐標方程為x2+(y-2)2=4;
(Ⅱ)由題意利用幾何法確定P到直線l的距離的最小值即可.
(Ⅰ)直線l:(其中t為參數(shù)),消去參數(shù)t得普通方程y=x-4.
由ρ=4sinθ得ρ2=4ρsinθ.
由x=ρcosθ,y=ρsinθ以及x2+y2=ρ2,得
x2+(y-2)2=4;
(Ⅱ)由x2+(y-2)2=4得圓心坐標為(0,2),半徑R=2,
則圓心到直線的距離為:d==3,
而點P在圓上,即O′P+PQ=d(Q為圓心到直線l的垂足),
所以點P到直線l的距離最小值為3-2.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)為了解群眾上下班共享單車使用情況,根據(jù)年齡按分層抽樣的方式調查了該地區(qū)50名群眾,他們的年齡頻數(shù)及使用共享單車人數(shù)分布如下表:
年齡段 | 20~29 | 30~39 | 40~49 | 50~60 |
頻數(shù) | 12 | 18 | 15 | 5 |
經(jīng)常使用共享單車 | 6 | 12 | 5 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認為以40歲為分界點對是否經(jīng)常使用共享單車有差異?
年齡低于40歲 | 年齡不低于40歲 | 總計 | |
經(jīng)常使用共享單車 | |||
不經(jīng)常使用共享單車 | |||
總計 |
附:,.
0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用共享單車的群眾中選出6人,再從這6人中隨機抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個盒子中,放有標號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標號分別為x、y,設O為坐標原點,點P的坐標為記.
(1)求隨機變量的最大值,并求事件“取得最大值”的概率;
(2)求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①在回歸分析中,可以借助散點圖判斷兩個變量是否呈線性相關關系.
②在回歸分析中,可以通過殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.
③在回歸分析模型中,相關系數(shù)的絕對值越大,說明模型的擬合效果越好.
④在回歸直線方程中,當解釋變量每增加1個單位時,預報變量增加0.1個單位.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在海上進行工程建設時,一般需要在工地某處設置警戒水域;現(xiàn)有一海上作業(yè)工地記為點,在一個特定時段內(nèi),以點為中心的1海里以內(nèi)海域被設為警戒水域,點正北海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東且與點相距10海里的位置,經(jīng)過12分鐘又測得該船已行駛到點北偏東且與點相距海里的位置.
(1)求該船的行駛速度(單位:海里/小時);
(2)若該船不改變航行方向繼續(xù)行駛.試判斷它是否會進入警戒水域(點與船的距離小于1海里即為進入警戒水域),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年推出一種新型家用轎車,購買時費用為16.9萬元,每年應交付保險費、養(yǎng)路費及汽油費共1.2萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元.
(I)設該輛轎車使用n年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為f(n),求f(n)的表達式;
(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;
(3)求數(shù)列前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓O:和點,由圓O外一點P向圓O引切線,Q為切點,且有 .
(1)求點P的軌跡方程,并說明點P的軌跡是什么樣的幾何圖形?
(2)求的最小值;
(3)以P為圓心作圓,使它與圓O有公共點,試在其中求出半徑最小的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com