A. | e+$\frac{1}{{e}^{2}}$ | B. | e+$\frac{1}{e}$ | C. | e2+$\frac{1}{e}$ | D. | e2+$\frac{1}{{e}^{2}}$ |
分析 由題意求導(dǎo)f′(x)=$\frac{1-lnx}{{x}^{2}}$-2x+2e=$\frac{1-lnx}{{x}^{2}}$+2(e-x);從而確定函數(shù)的單調(diào)性及取值情況,從而求k.
解答 解:∵f(x)=$\frac{lnx}{x}$-x2+2ex-k,
∴f′(x)=$\frac{1-lnx}{{x}^{2}}$-2x+2e
=$\frac{1-lnx}{{x}^{2}}$+2(e-x);
故當(dāng)x∈(0,e)時,f′(x)>0,
當(dāng)x∈(e,+∞)時,f′(x)<0,
故f(x)在(0,e)上是增函數(shù),在(e,+∞)上是減函數(shù);
且$\underset{lim}{x→{0}^{+}}$f(x)→-∞,$\underset{lim}{x→+∞}$f(x)→-∞;
故若使函數(shù)f(x)=$\frac{lnx}{x}$-x2+2ex-k有且只有一個零點(diǎn),
則f(e)=0,
即$\frac{1}{e}$-e2+2e2-k=0,
即k=$\frac{1}{e}$+e2,
故選:C.
點(diǎn)評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)零點(diǎn)的判斷與應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=ln|x| | B. | y=cosx | C. | $y=\frac{1}{x}$ | D. | y=-x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條既 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{2}π}{3}$ | B. | $\frac{16\sqrt{2}π}{3}$ | C. | $\frac{32\sqrt{2}π}{3}$ | D. | $\frac{64\sqrt{2}π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 91 5.5 | B. | 91 5 | C. | 92 5.5 | D. | 92 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com