雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),雙曲線l的漸近線與拋物線y2=8x的準線的一個交點縱坐標為-1,則雙曲線的離心率為
 
考點:雙曲線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:分別求出拋物線的準線方程和雙曲線的漸近線方程,由已知條件推導出b=2a,由此能求出雙曲線的離心率.
解答: 解:∵拋物線y2=8x的準線方程為x=-2,
雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程為y=±
b
a
x
,
雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線y2=8x的準線的一個交點縱坐標為-1,
∴點(-2,-1)在y=
b
a
x
上,
∴a=2b,
c=
a2+
1
4
a2
=
5
2
a

e=
c
a
=
5
2
,
故答案為:
5
2
點評:本題考查雙曲線的離心率的求法,是中檔題,解題時要認真審題,要熟練掌握拋物線和雙曲線的簡單性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-
2
3
ax3(a>0),x∈R.
(Ⅰ)求f(x)的單調區(qū)間和極值;
(Ⅱ)若對于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-1)2+alnx,a∈R.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)求證:“0<a<
4
9
”是函數(shù)f(x)有三個零點的必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程
3
sinx+cosx=k在區(qū)間[0,
π
2
]上有兩個不同的實數(shù)解,則實數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)對任意的x∈R都有f(x+3)=-f(x+1),且f(2)=2014,則f[f(2014)+2]+3=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校組織數(shù)學競賽,學生成績ξ-N(100,σ2),P(ξ≥120)=a,P(80<ξ≤100)=b,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集M={(x,y)|y=f(x)},若對任意點P1(x1,y1)∈M,存在點P2(x2,y2)∈M,使得
OP1
OP2
=0成立,則稱集合M是“幸福點集”.給出下列四個集合:
①M={(x,y)|y=
1
x
};          
②M={(x,y)|y=1+cos2x};
③M={(x,y)|y=lnx};         
④M={(x,y)|y=ex-1-2}.
其中是“幸福點集”的序號是
 
(填出所有滿足條件的集合序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一口袋中放有質地、大小完全相同的6個球,編號分別為1,2,3,4,5,6,甲先摸出一個球,記下編號,放回后乙再摸一個球,甲、乙兩人所摸球的編號不同的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的圖象與直線x=a,x=b及x軸所圍成的圖形的面積稱為f(x)在[a,b]上的面積,則函數(shù)y=sin(nx)(n>0)在[0,
π
n
]上的面積為
 

查看答案和解析>>

同步練習冊答案