分析 根據(jù)f(x)的定義域和值域分別為[m,n]和[3m,3n],我們易判斷出函數(shù)在[m,n]的單調(diào)性,進(jìn)而構(gòu)造出滿足條件的方程,解方程即可得到答案.
解答 解:f(x)=-$\frac{1}{2}$x2+x=-$\frac{1}{2}$(x-1)2+$\frac{1}{2}$≤$\frac{1}{2}$.
如果存在滿足要求的m,n,則必需3n≤$\frac{1}{2}$,
∴n≤$\frac{1}{6}$.
從而m<n≤$\frac{1}{6}$<1,而x≤1,f(x)單調(diào)遞增,
∴$\left\{\begin{array}{l}f(m)=-\frac{1}{2}{m}^{2}+m=3m\\ f(n)=-\frac{1}{2}{n}^{2}+n=3n\\ m<n\end{array}\right.$,
可解得m=-4,n=0滿足要求.
∴m-n=-4,
故答案為:-4
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①②④ | D. | ①③④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com