【題目】如圖,正方形、的邊長都是1,而且平面、互相垂直.點M在上移動,點N在上移動,若().
(1)當a為何值時,的長最。
(2)當長最小時,求面與面所成的二面角α的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐PABC中,底面ABC,,,,D,E分別是AC,PC的中點,F是PB上一點,且,M為PA的中點,二面角的大小為45°.
(1)證明:平面AEF;
(2)求直線AF與平面BCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?
(3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合,設集合是集合的非空子集,中的最大元素和最小元素之差稱為集合的直徑. 那么集合所有直徑為的子集的元素個數(shù)之和為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】光伏發(fā)電是利用太陽能電池及相關(guān)設備將太陽光能直接轉(zhuǎn)化為電能.近幾年在國內(nèi)出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏裝機量兆瓦 | 0.4 | 0.8 | 1.6 | 3.1 | 5.1 | 7.1 | 9.7 | 12.2 |
某位同學分別用兩種模型:①,②進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于):
經(jīng)過計算得,,,,其中,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立關(guān)于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01)
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)若恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com