【題目】如圖,在三棱柱中,底面ABC是邊長為2的正三角形,,E,F分別為BC,的中點.

1求證:平面平面

2求三棱錐的體積;

3在線段上是否存在一點M,使直線MF與平面沒有公共點?若存在,求的值;若不存在,請說明理由.

【答案】(1)見解析;(2);(3)見解析

【解析】

1推導出,,由,得,從而平面,由此能證明平面平面C.

2,能求出三棱錐的體積.

3中點M,連結(jié)MF,推導出,由此能求出線段上是否存在中點M,使直線MF與平面沒有公共點,此時

證明:1在三棱柱中,

因為為等邊三角形,EBC中點,

所以

平面ABC平面ABC,所以

因為,所以

因為,平面,平面,

所以平面C.

所以平面平面C.

2

的中點D,連結(jié)DE,則,,

所以平面

F的中點,所以

所以

,

即三棱錐的體積為

3在線段上存在一點M,滿足題意.

理由如下:

中點M,連結(jié)

因為F的中點,所以MF的中位線,

所以E.

因為平面,平面,

所以平面,

即直線MF與平面沒有公共點

此時

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是曲線上的點,是數(shù)列項和,且滿足

(1)若時,求的值;

(2)證明:數(shù)列是常數(shù)列;

(3)確定的取值集合M,使時,數(shù)列是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線為參數(shù),實數(shù)),曲線為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線交于,兩點,與交于兩點.當時,;當.

(1)求的值.

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

分類

積極參加

班級工作

不太主動參

加班級工作

總計

學習積極性高

18

7

25

學習積極性一般

6

19

25

總計

24

26

50

(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關(guān),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P伴隨點;

P是原點時,定義P伴隨點為它自身,平面曲線C上所有點的伴隨點所構(gòu)成的曲線定義為曲線C伴隨曲線”.現(xiàn)有下列命題:

若點A伴隨點是點,則點伴隨點是點A

單位圓的伴隨曲線是它自身;

若曲線C關(guān)于x軸對稱,則其伴隨曲線關(guān)于y軸對稱;

一條直線的伴隨曲線是一條直線.

其中的真命題是_____________(寫出所有真命題的序列).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為F1F2,離心率為,且點在橢圓上.

1)求橢圓C的標準方程;

2)若直線l過點M0,﹣2)且與橢圓C相交于A,B兩點,且OABO為坐標原點)的面積為,求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,離心率為,過右焦點的直線與橢圓交于不同兩點.線段的垂直平分線交軸于點.

(1)求橢圓的方程;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為,a為常數(shù))),過點、傾斜角為的直線的參數(shù)方程滿足,(為參數(shù)).

(1)求曲線C的普通方程和直線的參數(shù)方程;

(2)若直線與曲線C相交于A、B兩點(點P在A、B之間),且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1,F2是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且|PF1||PF2|,線段PF1的垂直平分線經(jīng)過點F2,若橢圓的離心率為e1,雙曲線的離心率為e2,則的最小值為(

A.2B.2C.6D.6

查看答案和解析>>

同步練習冊答案