【題目】如圖所示,四棱錐中,平面平面,△ABC為等腰三角形,為的中點,為的中點,且,.
(Ⅰ)證明:平面;
(Ⅱ)若,求三棱錐的體積.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)連結PF,先證明DC⊥平面ABC,再證明AFPE是平行四邊形,得到EP⊥平面BCD
(Ⅱ)先得到EP是三棱錐E﹣BDF的高,再計算EP=,代入面積公式計算得到答案.
(I)由題意知△ABC為等腰直角三角形,
而F為BC的中點,所以AF⊥BC.
又因為平面AEDC⊥平面ABC,且∠ACD=90°,
所以DC⊥平面ABC.
而AF平面ABC,所以AF⊥DC.
而BC∩DC=C,所以AF⊥平面BCD.
連結PF,則PF∥DC,PF=DC,
而AE∥DC,AE=DC,所以AE∥PF,AE=PF,
AFPE是平行四邊形,
因此EP∥AF,故EP⊥平面BCD.
(II)因為EP⊥平面BCD,所以EP⊥平面BDF,EP是三棱錐E﹣BDF的高.
所以EP=AF=BC==.
故三棱錐E﹣BDF的體積為:
V=.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,PO垂直于圓O所在的平面,且PO=OB=1.
(1)若D為線段AC的中點,求證:AC⊥平面PDO;
(2)求三棱錐P-ABC體積的最大值;
(3)若,點E在線段PB上,求CE+OE的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=BC=2,P為AB邊上一動點,PD∥BC交AC于點D,現(xiàn)將△PDA沿PD翻折至△PDA1,E是A1C的中點.
(1)若P為AB的中點證明:DE∥平面PBA1.
(2)若平面PDA1⊥平面PDA,且DE⊥平面CBA1,求二面角P﹣A1D﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項公式;
(2)求數(shù)列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】朱世杰是元代著名數(shù)學家,他所著《算學啟蒙》是一部在中國乃至世界最早的科學普及著作.《算學啟蒙》中提到一些堆垛問題,如“三角垛果子”,就是將一樣大小的果子堆垛成正三棱錐,每層皆堆成正三角形,從上向下數(shù),每層果子數(shù)分別為1,3,6,10,…,現(xiàn)有一個“三角垛果子”,其最底層每邊果子數(shù)為10,則該層果子數(shù)為( 。
A. 50B. 55C. 100D. 110
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)恰好有2個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點A到達點P的位置,且PE.
(1)求證:平面PBC 平面DEBC;
(2)求三棱錐P-EBC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當時,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com