某家具廠生產(chǎn)甲、乙兩種品牌的組合柜,每種柜制成白坯(成品而未油漆)的工時、油漆工時及有關數(shù)據(jù)如下表:(利潤單位元)
產(chǎn)品
時間
工藝要求
能力臺時/天
制白坯時間 6 12 120
油漆時間 8 4 64
單位利潤 200 240
問:該廠每天生產(chǎn)甲、乙這兩種組合柜各多少個,才能獲得最大的利潤?最大利潤是多少?
考點:簡單線性規(guī)劃的應用
專題:應用題,不等式的解法及應用
分析:設生產(chǎn)甲、乙兩種型號的組合柜分別為x個、y個,利潤為Z元,然后根據(jù)題目條件建立約束條件,得到目標函數(shù),畫出約束條件所表示的區(qū)域,然后利用平移法求出z的最大值,從而求出所求.
解答: 解:設生產(chǎn)甲、乙兩種型號的組合柜分別為x個、y個,利潤為Z元,
那么
6x+12y≤120
8x+4y≤64
x∈N
y∈N
①…(1分)
目標函數(shù)為 z=200x+240y…(2分)
作出二元一次不等式①所表示的平面區(qū)域(陰影部分)即可行域.把z=200x+240y變形為y=-
5
6
x+
1
240
z,得到斜率為-
5
6
,在軸上的截距為
1
240
z,隨z變化的一族平行直線.
如圖可以看出,當直線y=-
5
6
x+
1
240
z經(jīng)過可行域上M時,截距
1
240
z最大,即z最大.          …(6分)
解方程組
6x+12y=120
8x+4y=64

得A的坐標為x=4,y=8                     …(7分)
所以zmax=200x+240y=2720.
答:該公司每天生產(chǎn)生產(chǎn)甲、乙兩種型號的組合柜分別為4個、8個,能夠產(chǎn)生最大的利潤,最大的利潤是2720元.
點評:本題主要考查了簡單線性規(guī)劃的應用,以及平面區(qū)域圖的畫法和二元一次不等式組的解法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若z1=(m2+m+1)+(m2+m-4)i,m∈R,z2=3-2i,則m=1是z1=z2的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}
(1)若a1=1,an=3an-1+1,求an;
(2)若Sn=2n2-3n+1,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

菱形ABCD中,∠BAD=60°,AB=4,且AC∩BD=M,現(xiàn)將三角形BD沿著BD折起形成四面體SBCD,如圖所示.
(Ⅰ)當∠SMC為多大時,SM⊥面BCD?并證明;
(Ⅱ)在(Ⅰ)的條件下,求點D到面SBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點O是面積為4的△ABC內(nèi)部一點,且有
OA
+
OB
+2
OC
=
0
,則△AOC的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.數(shù)列{bn}的前n項和為Rn,Rn=1-
1
2n
,(n∈N*),
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(1,5,-1),
b
=(-2,3,5).
(1)當(λ
a
+
b
)∥(
a
-3
b
)時,求λ的值;
(2)當(
a
-3
b
)⊥(λ
a
+
b
)時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(-cos2x,2),
b
=(2,2-
3
sin2x),函數(shù)f(x)=
a
b
-4.
(Ⅰ)若x∈[0,
π
2
],求f(x)的最大值并求出相應x的值;
(Ⅱ)若將f(x)圖象上的所有點的縱坐標縮小到原來的
1
2
倍,橫坐標伸長到原來的2倍,再向左平移
π
3
個單位得到g(x)圖象,求g(x)的最小正周期和對稱中心;
(Ⅲ)若f(α)=-1,α∈(
π
4
,
π
2
),求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓O1,圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ,
(1)把圓O1,圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過圓O1,圓O2交點的直線的極坐標方程.

查看答案和解析>>

同步練習冊答案