【題目】如圖,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分別是A1B1、A1A的中點.
(1)求 的長;
(2)求cos( )的值;
(3)求證A1B⊥C1M.
【答案】
(1)解:如圖,以C為原點建立空間直角坐標系O﹣xyz.
依題意得B(0,1,0),N(1,0,1),
∴
(2)解:依題意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2).
∴ , , , ,
∴cos<
(3)證明:依題意得C1(0,0,2),M =(﹣1,1,﹣2), = ,
∴ = ,
∴
【解析】由直三棱柱ABC﹣A1B1C1中,由于BCA=90°,我們可以以C為原點建立空間直角坐標系O﹣xyz.(1)求出B點N點坐標,代入空間兩點距離公式,即可得到答案;(2)分別求出向量 , 的坐標,然后代入兩個向量夾角余弦公式,即可得到 , >的值;(3)我們求出向量 , 的坐標,然后代入向量數(shù)量積公式,判定兩個向量的數(shù)量積是否為0,若成立,則表明A1B⊥C1M
【考點精析】關(guān)于本題考查的異面直線及其所成的角,需要了解異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1﹣ 在R上是奇函數(shù).
(1)求a;
(2)對x∈(0,1],不等式sf(x)≥2x﹣1恒成立,求實數(shù)s的取值范圍;
(3)令g(x)= ,若關(guān)于x的方程g(2x)﹣mg(x+1)=0有唯一實數(shù)解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,說法正確的個數(shù)是( )
①命題“”的否定為“”;
②命題“在中, ,則”的逆否命題為真命題;
③設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的充分必要條件;
④若統(tǒng)計數(shù)據(jù)的方差為,則的方差為;
⑤若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)絕對值越接近1.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論: ①當x>1時,甲走在最前面;
②當x>1時,乙走在最前面;
③當0<x<1時,丁走在最前面,當x>1時,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:
①命題“x∈R,x2+x+1=0”的否定是“x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤﹣1},則A∩(RB)=A;
③函數(shù)f(x)=sin(ωx+φ)(ω>0)是偶函數(shù)的充要條件是φ=kπ+ (k∈Z);
④若非零向量 , 滿足 =λ , =λ (λ∈R),則λ=1.
其中正確命題的序號有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓心坐標為( ,1)的圓M與x軸及直線y= x分別相切于A,B兩點,另一圓N與圓M外切、且與x軸及直線y= x分別相切于C、D兩點.
(1)求圓M和圓N的方程;
(2)過點B作直線MN的平行線l,求直線l被圓N截得的弦的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)求實數(shù)a的取值范圍以及直線l的方程;
(2)若圓C上存在動點N使CN=2MN成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點M(1,2),且直線l與x軸正半軸和y軸的正半軸交點分別是A、B,(如圖,注意直線l與坐標軸的交點都在正半軸上)
(1)若三角形AOB的面積是4,求直線l的方程.
(2)求過點N(0,1)且與直線l垂直的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進行合理定價,將產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
已知
(1)求的值
(2)已知變量具有線性相關(guān)性,求產(chǎn)品銷量關(guān)于試銷單價的線性回歸方程 可供選擇的數(shù)據(jù)
(3)用表示(2)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值。當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com