過點且與圓相切的直線方程為_________________

試題分析:根據(jù)題意,圓心(0,0),半徑為1,那么可知過點(1,0)斜率不存在時則可知x=1符合題意,同時當(dāng)斜率存在時,則利用圓心到直線的距離為半徑1,即設(shè)直線方程為y-2=k(x-1),結(jié)合點到直線的距離公式, ,則可知直線方程為
點評:解決的關(guān)鍵是根據(jù)直線與圓相切的思想利用直線的垂直關(guān)系來得到直線方程的求解。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,己知圓P在x軸上截得線段長為2,在軸上截得線段長為.
(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點到直線y=x的距離為,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓的方程是,若以坐標(biāo)原點為極點,軸的正半軸為極軸,則該圓的極坐標(biāo)方程可寫為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點。若點的坐標(biāo)為(3,),求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一束光線從點A(-3,9)出發(fā)經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1的最短路程是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,P為雙曲線上任一點,已知||·||的最小值為m.當(dāng)≤m≤時,其中c=,則雙曲線的離心率e的取值范圍是 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果圓x2+y2+Dx+Ey+F=0與x軸切于原點, 那么(  )
A.D=0,E≠0, F≠0;B.E=F=0,D≠0;
C.D="F=0," E≠0;D.D=E=0,F≠0;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓交于A、B兩點,O是坐標(biāo)原點,若直線OA、OB的傾斜面角分別為,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,直線被圓所截得的弦的中點為P(5,3).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案