設(shè)i是虛數(shù)單位,復(fù)數(shù)1+i為方程x2-2x+m=0(m∈R)的一個(gè)根,則m=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)方程根的特點(diǎn),利用復(fù)數(shù)方程的特點(diǎn)即可得到結(jié)論.
解答: 解:∵1+i為方程x2-2x+m=0(m∈R)的一個(gè)根,
∴(1+i)2-2(1+i)+m=0(m∈R),
即2i-2-2i+m=0,
解得m=2,
故答案為:2
點(diǎn)評:本題主要考查復(fù)數(shù)的有關(guān)計(jì)算,利用復(fù)數(shù)相等是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(2-
5
x)3=a0+a1x+a2x2+a3x3,求(a0+a22-(a1+a32的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且x+y=
3
4
,則
4
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+4y=0的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某算法的偽代碼如圖所示,則可算得f(-1)+f(e)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(-α)=
1
3
,則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過點(diǎn)P(3,4)的直線與圓(x-2)2+(y-2)2=4相切,且與直線ax-y+1=0垂直,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心;且“拐點(diǎn)”就是對稱中心.”請你根據(jù)這一發(fā)現(xiàn),函數(shù)f(x)=x3-3x2+3x+1對稱中心為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3
cos2x+sinxcosx(-
3
2
)的周期是( 。
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

同步練習(xí)冊答案