14.若直線y=-x+m與圓x2+y2=1有2個交點,則m的取值范圍為-$\sqrt{2}$<m<$\sqrt{2}$.

分析 利用圓心到直線的距離小于半徑,建立不等式,即可確定實數(shù)m的取值范圍.

解答 解:∵直線y=-x+m與圓x2+y2=1有2個交點,
∴圓心到直線的距離小于半徑,即d=$\frac{|m|}{\sqrt{2}}$<1
∴-$\sqrt{2}$<m<$\sqrt{2}$.
故答案為:-$\sqrt{2}$<m<$\sqrt{2}$.

點評 本題考查直線和圓的方程的應用,解題的關(guān)鍵是利用圓心到直線的距離小于半徑,建立不等式,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)△ABC的面積S=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,角A,B,C所對的邊為a,b,c且c=$\sqrt{2}$a.
(1)求角C的大;
(2)若△ABC內(nèi)一點P滿足AP=AC,BP=CP,求∠PAC的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,$\overrightarrow{AE}$=$\frac{1}{5}$$\overrightarrow{AB}$,EF∥BC,EF交AC于F,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{BF}$可以用$\overrightarrow{a}$,$\overrightarrow$表示的形式是$\overrightarrow{BF}$=$-\overrightarrow{a}$$+\frac{1}{5}$$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)$\overrightarrow{e}$是非零向量,若$\overrightarrow{a}$+$\overrightarrow$=2$\overrightarrow{e}$,2$\overrightarrow{a}$-$\overrightarrow$=-3$\overrightarrow{e}$,向量$\overrightarrow{a}$與$\overrightarrow$是否平行?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.化簡:$\frac{sin5°+cos15°sin10°}{cos5°-sin15°sin10°}$=2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)正方體ABCD-A1B1C1D1的棱長為2,則點D1到平面A1BD的距離是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}滿足:a1=$\frac{3}{2}$,且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$(n≥2,n∈N*).證明:{1-$\frac{n}{{a}_{n}}$}為一個等比數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列函數(shù)完全相同的是( 。
A.f(x)=x,g(x)=x2B.f(x)=x,g(x)=$\root{3}{x^3}$C.f(x)=x,g(x)=$\sqrt{x}$D.f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)集合A={x|0<x<4},B={x|x<a}若A⊆B,則實數(shù)a的取值范圍是( 。
A.{a|a≤0}B.{a|0<a≤4}C.{a|a≥4}D.{a|0<a<4}

查看答案和解析>>

同步練習冊答案