15.已知函數(shù)y=log2(4x+1)-kx是偶函數(shù).
(1)求k的值;
(2)若f(x)>log25-1,求x的取值范圍;
(3)設(shè)函數(shù)g(x)=log2(a•2x-$\frac{4}{3}$a),其中a>0,若函數(shù)f(x)與g(x)的圖象有且只有一個交點,求a的取值范圍.

分析 (1)直接根據(jù)函數(shù)的奇偶性列式求出k的值;
(2)根據(jù)對數(shù)函數(shù)的單調(diào)性解不等式;
(3)運用函數(shù)與方程思想解題,問題轉(zhuǎn)化為關(guān)于t的方程$(a-1){t^2}-\frac{4}{3}at-1=0$在$(\frac{4}{3},+∞)$上只有一解.

解答 解:(1)∵$f(x)={log_2}({4^x}+1)-kx\;\;(k∈R)$是偶函數(shù),
∴$f(-x)={log_2}({4^{-x}}+1)+kx=f(x)$對任意x∈R恒成立,
${log_2}({4^x}+1)-2x+kx={log_2}({4^x}+1)-kx$恒成立,
則2(k-1)x=0恒成立,因此,k=1;
$\begin{array}{l}(2)若{log_2}({4^x}+1)-x>{log_2}5-1則{log_2}\frac{{({4^x}+1)}}{5}>x-1\\ 所以\frac{{({4^x}+1)}}{5}>{2^{x-1}},所以{4^x}-5×{2^{x-1}}+1>0\\ 令t={2^x}則有{t^2}-\frac{5}{2}t+1>0即2{t^2}-5t+2>0…(4分)\\ 解得t<\frac{1}{2}或t>2…(5分)\\ 所以{2^x}<\frac{1}{2}或{2^x}>2\\ 所以x<-1或x>1…(6分)\end{array}$
(3)由于a>0,所以$g(x)={log_2}(a•{2^x}-\frac{4}{3}a)$定義域為$({log_2}\frac{4}{3},+∞)$,也就是滿足${2^x}>\frac{4}{3}$,
∵函數(shù)f(x)與g(x)的圖象有且只有一個交點,
∴方程${log_2}({4^x}+1)-x={log_2}(a•{2^x}-\frac{4}{3}a)$在$({log_2}\frac{4}{3},+∞)$上只有一解
即:方程$\frac{{{4^x}+1}}{2^x}=a•{2^x}-\frac{4}{3}a$在$({log_2}\frac{4}{3},+∞)$上只有一解,令2x=t,則$t>\frac{4}{3}$,
因而問題等價為:關(guān)于t的方程$(a-1){t^2}-\frac{4}{3}at-1=0$(*)在$(\frac{4}{3},+∞)$上只有一解,
①當a=1時,解得$t=-\frac{3}{4}∉(\frac{4}{3},+∞)$,不合題意;
②當0<a<1時,記$h(t)=(a-1){t^2}-\frac{4}{3}at-1$,其圖象的對稱軸$t=\frac{2a}{3(a-1)}<0$,
∴函數(shù)f(2m-mcosθ)+f(-1-sin2θ)<f(0)在(0,+∞)上遞減,而h(0)=-1,
∴方程(*)在$(\frac{4}{3},+∞)$無解;
③當a>1時,記$h(t)=(a-1){t^2}-\frac{4}{3}at-1$,其圖象的對稱軸$t=\frac{2a}{3(a-1)}>0$,h(0)=-1,
 所以,只需$h(\frac{4}{3})<0$,即$\frac{16}{9}(a-1)-\frac{16}{9}a-1<0$,此恒成立∴此時a的范圍為a>1,
綜上所述,所求a的取值范圍為a>1.

點評 本題主要考查了函數(shù)奇偶性的應(yīng)用,運用對數(shù)函數(shù)的單調(diào)性解不等式,以及函數(shù)圖象交點的確定,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知一組數(shù)據(jù)X1,X2,X3,…,Xn的方差是S2,那么另一組數(shù)據(jù)2X1-1,2X2-1,2X3-1,…,2Xn-1的方差是( 。
A.2S2-1B.2S2C.S2D.4S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.從{1,2,3,4,5,6}中任取兩個不同的數(shù)m,n(m>n),則$\frac{n}{m}$能夠約分的概率為$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等差數(shù)列{an}中,a1>0,S3=S10,則當Sn取最大值時,n的值為(  )
A.6B.7C.6或7D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=-x2+2x+3,x∈[0,3]的最大值和最小值分別是M,m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3+t\\ y=\sqrt{3}t\end{array}\right.(t為參數(shù))$,以原點為極點,x軸正半軸為極軸建立極坐標系,圓C 的極坐標方程為$ρ=2\sqrt{3}sinθ$.
(1)寫出直線l的普通方程及圓C 的直角坐標方程;
(2)點P是直線l上的,求點P 的坐標,使P 到圓心C 的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)點A(x1,y1),B(x2,y2)是橢圓$\frac{{x}^{2}}{4}$+y2=1上兩點,若過點A,B且斜率分別為-$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的兩直線交于點P,且直線OA與直線OB的斜率之積為-$\frac{1}{4}$,E($\sqrt{6}$,0),則|PE|的最小值為2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)隨機變量X服從正態(tài)分布N(μ,σ2)(σ>0),若P(X<-1)+P(X<0)=1,則μ的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x、y滿足|x-1|+|y|≤a(a>0),若x=2x+y的最大值為3,則z的最小值為-1.

查看答案和解析>>

同步練習(xí)冊答案