【題目】已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時,f(x)=x2+ ,則f(﹣1)=( )
A.2
B.1
C.0
D.﹣2
【答案】D
【解析】解:∵已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時,f(x)=x2+ ,則f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故選D.
【考點精析】利用函數(shù)奇偶性的性質(zhì)和函數(shù)的值對題目進(jìn)行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇;函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[﹣2,2]上的函數(shù)y=f(x)和y=g(x),其圖象如圖所示:給出下列四個命題:
①方程f[g(x)]=0有且僅有6個根 ②方程g[f(x)]=0有且僅有3個根
③方程f[f(x)]=0有且僅有5個根 ④方程g[g(x)]=0有且僅有4個根
其中正確命題的序號( )
A.①②③
B.②③④
C.①②④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線 =1(a>0,b>0)的左焦點F(﹣c,0)作圓x2+y2=a2的切線,切點為E,延長FE交拋物線y2=4cx于點P,O為坐標(biāo)原點,若 = ( + ),則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是 ,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求二面角A1﹣BD﹣A的大小;
(3)求直線AB1與平面A1BD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+1)+ ﹣x2﹣ax(a∈R)
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當(dāng)a≥ 時,設(shè)g(x)=ln[x2(ax+1)]+ ﹣3ax﹣f(x)(x>0)的兩個極值點x1 , x2(x1<x2)恰為φ(x)=lnx﹣cx2﹣bx的零點,求y=(x1﹣x2)φ′( )的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了了解、兩個班級學(xué)生在本學(xué)期前兩個月內(nèi)觀看電視節(jié)目的時長,分別從這兩個班級中隨機(jī)抽取10名學(xué)生進(jìn)行調(diào)查,得到他們觀看電視節(jié)目的時長分別為(單位:小時):
班:5、5、7、8、9、11、14、20、22、31;
班:3、9、11、12、21、25、26、30、31、35.
將上述數(shù)據(jù)作為樣本.
(Ⅰ)繪制莖葉圖,并從所繪制的莖葉圖中提取樣本數(shù)據(jù)信息(至少寫出2條);
(Ⅱ)分別求樣本中、兩個班級學(xué)生的平均觀看時長,并估計哪個班級的學(xué)生平均觀看的時間較長;
(Ⅲ)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個不超過11的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個不超過11的數(shù)據(jù)記為,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x3﹣ x2+bx+c在x=1時取得極值,且當(dāng)x∈[﹣1,2]時,f(x)<c2恒成立.
(1)求實數(shù)b的值;
(2)求實數(shù)c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com