【題目】按下面的流程圖進(jìn)行計算.若輸出的,則輸入的正實數(shù)值的個數(shù)最多為( )
A. B. C. D.
【答案】A
【解析】程序框圖的用途是數(shù)列求和,當(dāng)x>100時結(jié)束循環(huán),輸出x的值為202:
當(dāng)202=3x+1,解得x=67;即輸入x=67時,輸出結(jié)果202.
202=3(3x+1)+1,解得x=22;即輸入x=22時,輸出結(jié)果202.
202=3(3(3x+1)+1)+1.即201=3(3(3x+1)+1),
∴67=3(3x+1)+1,即22=3x+1,解得x=7,輸入x=7時,輸出結(jié)果202.
202=3(3(3(3x+1)+1)+1)+1.解得x=2,輸入x=2時,輸出結(jié)果202.
202=3(3(3(3(3x+1)+1)+1)+1)+1.解得x=,輸入x=時,輸出結(jié)果202.
共有5個不同的x值。
故答案為A。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心為,直線過點且與軸不重合, 交圓于兩點,過作的平行線交于點.
(1)證明為定值,并寫出點的軌跡方程;
(2)設(shè),過點作直線,交點的軌跡于兩點 (異于),直線的斜率分別為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點分別為的中點,設(shè)直線與平面交于點.
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點分別是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)在棱上求作一點,使得,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心的中心在中心在坐標(biāo)原點,焦點在軸上且過點,離心率是.
()求橢圓的標(biāo)準(zhǔn)方程.
()直線過點且與橢圓交于、兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)設(shè),討論的單調(diào)性;
(2)若函數(shù)在內(nèi)存在零點,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是海面上位于東西方向相距海里的兩個觀測點.現(xiàn)位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號.位于B點南偏西60°且與B相距20海里的C點的救援船立即前往營救,其航行速度為30海里/小時。求救援船直線到達(dá)D的時間和航行方向.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com