【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點(diǎn)分別是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)在棱上求作一點(diǎn),使得,并說明理由.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)證明即可得到平面
(Ⅱ)證明和即可證明平面
(Ⅲ)取中點(diǎn),連接, ,過點(diǎn)作,交于點(diǎn). 則點(diǎn)即為所求作的點(diǎn).
試題解析:(Ⅰ)因?yàn)辄c(diǎn), 分別是, 的中點(diǎn),所以
因?yàn)樗倪呅螢檎叫,所?/span>
所以
因?yàn)?/span>平面, 平面,
所以平面
(Ⅱ)因?yàn)槠矫?/span>底面, ,
所以平面
因?yàn)?/span>平面,所以
因?yàn)?/span>,點(diǎn)是的中點(diǎn),所以
因?yàn)?/span>, 平面, 平面,
所以平面
(Ⅲ)取中點(diǎn),連接, ,過點(diǎn)作,交于點(diǎn). 則點(diǎn)即為所求作的點(diǎn).
理由:因?yàn)?/span>,點(diǎn)是的中點(diǎn),所以
因?yàn)槠矫?/span>底面,所以平面
所以
因?yàn)?/span>, ,所以平面
因?yàn)?/span>平面,所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn),且在軸上截得的弦長為.
(1)求動(dòng)圓的圓心點(diǎn)的軌跡方程;
(2)過點(diǎn)的動(dòng)直線與曲線交于兩點(diǎn),平面內(nèi)是否存在定點(diǎn),使得直線分別交于兩點(diǎn),使得直線的斜率,滿足?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取100名學(xué)生,測得他們的身高(單位: ),按照區(qū)間,
分組,得到樣本身高的頻率分布直方圖(如圖).
(1)求頻率分布直方圖中的值及身高在以上的學(xué)生人數(shù);
(2)將身高在區(qū)間內(nèi)的學(xué)生依次記為三個(gè)組,用分層抽樣的方法從這三個(gè)組中抽取6人,求從這三個(gè)組分別抽取的學(xué)生人數(shù);
(3)在(2)的條件下,要從6名學(xué)生中抽取2人.用列舉法計(jì)算組中至少有1人被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)是偶函數(shù);
(2)設(shè),求關(guān)于的函數(shù)在時(shí)的值域的表達(dá)式;
(3)若關(guān)于的不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列, , , 滿足,且當(dāng)時(shí), ,令.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按下面的流程圖進(jìn)行計(jì)算.若輸出的,則輸入的正實(shí)數(shù)值的個(gè)數(shù)最多為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(Ⅰ)當(dāng)在處切線的斜率為,求的值;
(Ⅱ)在(Ⅰ)的前提下,求的極值;
(Ⅲ)若有個(gè)不同零點(diǎn),求的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某百貨商場舉行年終慶典,推出以下兩種優(yōu)惠方案:
方案一:單筆消費(fèi)每滿200元立減50元,可累計(jì);
方案二:單筆消費(fèi)滿200元可參與一次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)規(guī)則如下:從裝有6個(gè)小球(其中3個(gè)紅球3個(gè)白球,它們除顏色外完全相同)的盒子中隨機(jī)摸出3個(gè)小球,若摸到3個(gè)紅球則按原價(jià)的5折付款,若摸到2個(gè)紅球則按原價(jià)的7折付款,若摸到1個(gè)紅球則按原價(jià)的8折付款,若未摸到紅球按原價(jià)的9折付款。
單筆消費(fèi)不低于200元的顧客可從中任選一種優(yōu)惠方案。
(I)某顧客購買一件300元的商品,若他選擇優(yōu)惠方案二,求該顧客最好終支付金額不超過250元的概率。
(II)若某顧客的購物金額為210元,請用所學(xué)概率知識(shí)分析他選擇哪一種優(yōu)惠方案更劃算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com