已知集合M={y|y=zx},N={x|y=
2x-x2
},則M∩N=(  )
A、∅
B、{x|0<x≤2}
C、{x|0<x≤1}
D、{x|x>0}
考點:交集及其運算
專題:集合
分析:求出M中y的范圍確定出M,求出N中x的范圍確定出N,找出M與N的交集即可.
解答: 解:由M中y=2x>0,得到M={x|x>0},
由N中y=
2x-x2
,得到2x-x2≥0,
解得:0≤x≤2,即N={x|0≤x≤2},
則M∩N={x|0<x≤2}.
故選:B.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,a3=25,則log 
1
5
a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在實數(shù)集R上的奇函數(shù),且當(dāng)x∈(-∞,0)時,xf′(x)<f(x)成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=
3
f(
3
),b=f(1),c=(log2
1
4
)f(log2
1
4
),則a,b,c的大小關(guān)系是 ( 。
A、c>a>b
B、c>b>a
C、a>b>c
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題中,真命題是(  )
A、l,m.n是空間的三條不同直線,若m⊥l,n⊥l,則m∥n
B、α,β,γ是空間的三個不同平面,若α⊥γ,β⊥γ,則α∥β
C、兩條異面直線所成的角的范圍是(0,π)
D、兩個平面相交但不垂直,直線m?α,則在平面β內(nèi)不一定存在直線與m平行,但一定存在直線與垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-1,0),B(1,0),C(0,1),直線y=ax+b(a>0)與直線AC,BC分別交于點M,N,且將△ABC分割為面積相等的兩部分,則b的取值范圍是( 。
A、(1-
2
2
,
1
3
]
B、[
1
3
,
1
2
C、(1-
2
2
,
1
2
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合 A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A}則B中所含元素的個數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=2,
a
b
的夾角為60°,則(
a
+2
b
 )•(
a
-3
b
)等于( 。
A、-10B、-11
C、-12D、-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且雙曲線C1
x2
a2
-
y2
b2
=1與橢圓C:
x2
a2
+
y2
b2
=2有共同的焦點,則雙曲線C1的離心率為 (  )
A、
2
B、2
C、
2
3
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
6
+
y2
2
=1和雙曲線
x2
2
-
y2
2
=1的公共焦點為F1,F(xiàn)2,P是兩曲線的一個交點,則∠F1PF2的值為(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步練習(xí)冊答案