【題目】一個(gè)盒子中有5只同型號的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設(shè)每只燈泡被取到的可能性都相同,請用“列舉法”解答下列問題:

(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;

(Ⅱ)求至少有一次取到二等品的概率.

【答案】(Ⅰ);(Ⅱ).

【解析】

列舉出所有的基本事件,共有20個(gè),I)從中查出第一次取到二等品,且第二次取到的是一等品的基本事件數(shù)共有6個(gè),利用古典概型的概率公式可得結(jié)果;(II)事件至少有一次取到二等品的對立事件是取到的全是一等品”,“取到的全是一等品包括了6個(gè)事件,至少有一次取到二等品取法有14, 利用古典概型的概率公式可得結(jié)果.

(I)令3只一等品燈泡分別為;2只二等品燈泡分別為.

從中取出只燈泡,所有的取法有20種,分別為:,,,,,,,,,

第一次取到二等品,且第二次取到的是一等品取法有6種,

分別為,故概率是;

(II)事件“至少有一次取到二等品”的對立事件是“取到的全是一等品”,

“取到的全是一等品”包括了6種分別為,

故“至少有一次取到二等品”取法有14種,事件“至少有一次取到二等品”的概率是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,又點(diǎn)在該橢圓上.

1)求橢圓的方程;

2)若斜率為的直線與橢圓交于不同的兩點(diǎn),,求的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)平面,分別對應(yīng)復(fù)數(shù),已知,且為常數(shù)).

1)設(shè),用數(shù)學(xué)歸納法證明:;

2)寫出數(shù)列的通項(xiàng)公式;

3)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn).

(1)求的取值范圍;

(2)的兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋中裝有紅球,黑球共7個(gè),若從中任取兩個(gè)小球(每個(gè)球被取到的可能性相同),其中恰有一個(gè)紅球的概率為.

1)求袋中紅球的個(gè)數(shù);

2)若袋中紅球比黑球少,從袋中任取三個(gè)球,求三個(gè)球中恰有一個(gè)紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長為1

求橢圓C的方程;

點(diǎn)為橢圓C上一動點(diǎn),連接,,設(shè)的角平分線PM交橢圓C的長軸于點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合 ,如果存在的子集,同時(shí)滿足如下三個(gè)條件:

;

,兩兩交集為空集;

,則稱集合具有性質(zhì).

(Ⅰ) 已知集合,請判斷集合是否具有性質(zhì),并說明理由;

(Ⅱ)設(shè)集合,求證:具有性質(zhì)的集合有無窮多個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,O的中點(diǎn).

1)證明:平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案