【題目】已知袋中裝有紅球,黑球共7個,若從中任取兩個小球(每個球被取到的可能性相同),其中恰有一個紅球的概率為.
(1)求袋中紅球的個數(shù);
(2)若袋中紅球比黑球少,從袋中任取三個球,求三個球中恰有一個紅球的概率.
【答案】(1)3個或4個 (2)
【解析】
(1)設袋中紅球的個數(shù)為x,黑球個數(shù)為,根據(jù)分步計數(shù)原理求出基本事件總數(shù)以及恰有一個紅球包含的基本事件數(shù),解方程即可求出答案;
(2)根據(jù)計數(shù)原理求出恰有一個紅球的基本事件數(shù)與基本事件總數(shù),再根據(jù)概率計算公式求解即可.
解:(1)設袋中紅球的個數(shù)為x,黑球個數(shù)為,則:
總的基本事件個數(shù),
取出一個紅球的基本事件個數(shù)為,
∴,化簡得,
解得或,
∴袋中紅球的個數(shù)為3個或4個;
(2)由(1)可知袋中有3個紅球,4個黑球,
基本事件總數(shù)為,
①第一次取紅球包含的基本事件數(shù)為:,
②第二次取紅球包含的基本事件數(shù)為:,
③第三次取紅球包含的基本事件數(shù)為:,
∴所求概率.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若點的極坐標為,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且, ,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說明理由;
(3)設是無窮數(shù)列,已知.求證:“對任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子中有5只同型號的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設每只燈泡被取到的可能性都相同,請用“列舉法”解答下列問題:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,,,點、分別在線段、上,且,,現(xiàn)將沿折到的位置,連結,,如圖2
(1)證明:;
(2)記平面與平面的交線為.若二面角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為,為圓上任意一點,,線段的垂直平分線交于點.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線,點,.若點為直線上一動點,且不在軸上,直線、分別交曲線于、兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自貢農(nóng)科所實地考察,研究發(fā)現(xiàn)某貧困村適合種植,兩種藥材,可以通過種植這兩種藥材脫貧.通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):藥材的畝產(chǎn)量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
單價(元/公斤) | 18 | 20 | 23 | 25 | 29 |
藥材的收購價格始終為20元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:
(1)若藥材的單價(單位:元/公斤)與年份編號具有線性相關關系,請求出關于的回歸直線方程,并估計2020年藥材的單價;
(2)用上述頻率分布直方圖估計藥材的平均畝產(chǎn)量,若不考慮其他因素,試判斷2020年該村應種植藥材還是藥材?并說明理由.
參考公式:,(回歸方程中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com