1.設(shè)tanα=2.
(1)求$\frac{1+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$的值;
(2)求2sin2α-3sinαcosα+5cos2α的值.

分析 (1)利用同角三角函數(shù)基本關(guān)系式,化簡表達式為正切函數(shù)的形式,求解即可.
(2)表達式的分母利用同角三角函數(shù)基本關(guān)系式,然后化簡表達式為正切函數(shù)的形式,求解即可.

解答 解:tanα=2.
(1)$\frac{1+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$=$\frac{ta{n}^{2}α+1+2tanα}{ta{n}^{2}α-1}$=$\frac{4+1+4}{4-1}$=3;
(2)求2sin2α-3sinαcosα+5cos2α=$\frac{2ta{n}^{2}α-3tanα+5}{ta{n}^{2}α+1}$=$\frac{8-6+5}{4+1}$=$\frac{7}{5}$.

點評 本題考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用三角函數(shù)化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,過右焦點F且斜率為1的直線交橢圓C于A,B兩點,設(shè)M橢圓C上任意一點,且$\overrightarrow{OM}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,則λ+μ的取值范圍為[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)區(qū)域D:{(x,y)|x+y≤1,x-y≥0,y≥0}.
(Ⅰ)在直角坐標(biāo)系中作出區(qū)域D的圖形并求出其面積;
(Ⅱ)若z=ax+by(b>a>0),(x,y)∈D的最大值為1,求$\frac{4}{a}$+$\frac{1}$的最小值;
(Ⅲ)若(m,n)∈D,比較雙曲線C1:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{(n-1)^{2}}$=1和C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{(m-1)^{2}}$=1的離心率e1,e2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax(a>0,且a≠1).
(1)若f(x0)=3,求f(2x0):
(2)若f(2x2-3x+1)>f(x2+2x-5),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.觀察y=sinx的圖象,回答下列問題:
(1)當(dāng)x從-$\frac{3π}{2}$變到-π時,sinx的值增加還是減少?是正的還是負的?
(2)對應(yīng)于x=$\frac{π}{6}$,sinx有多少個值?
(3)對應(yīng)于sinx=$\frac{1}{2}$,x有多少個值?并寫出x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=cos(3x+θ)(θ為常數(shù))為奇函數(shù),那么cosθ等于( 。
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=$\sqrt{\frac{x}{{x}^{2}+3x+1}}$的值域是[0,$\frac{\sqrt{5}}{5}$]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)角α=-$\frac{29}{6}$π,則與α終邊相同的最小正角是$\frac{7π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.比較代數(shù)式2x2-7x+2與x2-5x的大。

查看答案和解析>>

同步練習(xí)冊答案