14.已知圓柱的底面半徑為4,與圓柱底面成60°角的平面截這個(gè)圓柱得到一個(gè)橢圓,則這個(gè)橢圓的離心率為$\frac{\sqrt{3}}{2}$.

分析 如圖所示,設(shè)橢圓的長軸為AB,短軸為CD,中心為點(diǎn)O1.圓柱的底面中心為O,則∠OAB=60°,可得a=O1A$\frac{OA}{cos6{0}^{°}}$,b=$\frac{1}{2}CD$=4,可得$c=\sqrt{{a}^{2}-^{2}}$,即可得出..

解答 解:如圖所示,
設(shè)橢圓的長軸為AB,短軸為CD,中心為點(diǎn)O1
圓柱的底面中心為O,
則∠OAB=60°,
可得a=O1A$\frac{OA}{cos6{0}^{°}}$=8,
b=$\frac{1}{2}CD$=4,
∴$c=\sqrt{{a}^{2}-^{2}}$=$4\sqrt{3}$.
∴這個(gè)橢圓的離心率=$\frac{c}{a}$=$\frac{4\sqrt{3}}{8}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評 本題考查了二面角的平面角、圓柱的性質(zhì)、橢圓的離心率、直角三角形的邊角關(guān)系,考查了空間想象能力、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$sin(x+\frac{π}{3})=\frac{1}{3},x∈(0,π)$,則$sin(\frac{π}{6}-x)$=-$\frac{2\sqrt{2}}{3}$;$cos(2x+\frac{π}{3})$=$\frac{7+4\sqrt{6}}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.吉安市教育局組織中學(xué)生籃球比賽,共有實(shí)力相當(dāng)?shù)腁,B,C,D四支代表隊(duì)參加比賽,比賽規(guī)則如下:第一輪:抽簽分成兩組,每組兩隊(duì)進(jìn)行一場比賽,勝者進(jìn)入第二輪;第二輪:兩隊(duì)進(jìn)行決賽,勝者得冠軍.
(1)求比賽中A、B兩隊(duì)在第一輪相遇的概率;
(2)求整個(gè)比賽中A、B兩隊(duì)沒有相遇的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若復(fù)數(shù)(a2-1)+(a-1)i是純虛數(shù),則實(shí)數(shù)a的值為(  )
A.1B.0C.1或-1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=1,公比q>0,其前n項(xiàng)和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}(2a-1)x+3a,x<1\\{a^x},x≥1\end{array}$滿足對任意x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<0成立,那么a的取值范圍是( 。
A.(0,1)B.$(0,\frac{1}{2})$C.$[\frac{1}{4},\frac{1}{2})$D.$[\frac{1}{4},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對于函數(shù)f(x)=$\frac{{{2^x}+a}}{{{2^x}-1}}$,
(1)求函數(shù)的定義域;       
(2)當(dāng)a為何值時(shí),f(x)為奇函數(shù);
(3)用定義證明(2)中的函數(shù)在(0,+∞)上是單調(diào)遞減的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an+1=$\frac{1}{2{a}_{n}+1}$(n∈N*).
(1)證明:數(shù)列{|an-$\frac{1}{2}$|}為單調(diào)遞減數(shù)列;
(2)記Sn為數(shù)列{|an+1-an|}的前n項(xiàng)和,證明:Sn<$\frac{5}{3}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“a≥-3”是“f(x)=-|x+a|在[3,+∞)上為減函數(shù)”的什么條件(  )
A.充分不必要B.必要不充分C.充要D.不充分不必要

查看答案和解析>>

同步練習(xí)冊答案