A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
分析 由題意,建立直角坐標系,設雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0),可得雙曲線過點(0,4),(2$\sqrt{3}$,4),求出a,b,可得c,即可得出此雙曲線的離心率.
解答 解:由題意,在截面中建立直角坐標系,設雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0),
可得雙曲線過點(0,4),(2$\sqrt{3}$,4),
∴a=2,
∴$\frac{16}{4}-\frac{12}{^{2}}$=1,
∴b=2,
∴c=2$\sqrt{2}$,
∴e=$\frac{c}{a}$=$\sqrt{2}$,
故選:C.
點評 本題考查雙曲線的離心率,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -a,a | B. | a,$\frac{1}{a}$ | C. | -a,$\frac{1}{a}$ | D. | -$\frac{1}{a}$,a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | R | B. | (-∞,1)∪(1,+∞) | C. | (-∞,2)∪(2,+∞) | D. | (-∞,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com