【題目】已知四個命題:

①在回歸分析中, 可以用來刻畫回歸效果, 的值越大,模型的擬合效果越好;

②在獨立性檢驗中,隨機變量的值越大,說明兩個分類變量有關(guān)系的可能性越大;

③在回歸方程中,當解釋變量每增加1個單位時,預(yù)報變量平均增加1個單位;

④兩個隨機變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于1;

其中真命題是:

A. ①④ B. ②④ C. ①② D. ②③

【答案】C

【解析】對于①,在回歸分析中, 可以用來刻畫回歸效果, 的值越大,模型的擬合效果越好,正確;對于②;在獨立性檢驗中,隨機變量的值越大,說明兩個分類變量有關(guān)系的可能性越大,正確;對于③,在回歸方程中,當解釋變量每增加1個單位時,預(yù)報變量平均增加個單位,錯誤;對于④,兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1,錯誤;故選C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)是一個水平放置的正三棱柱 是棱的中點,正三棱柱的主視圖如圖(2).

(1)圖(1)中垂直于平面的平面有哪幾個(直接寫出符合要求的平面即可,不必說明或證明)

(2)求正三棱柱的體積;

(3)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程是為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設(shè)點,若直線與曲線交于 兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關(guān)系,在本校隨機調(diào)查了100名學生進行研究.研究結(jié)果表明:在數(shù)學成績及格的60名學生中有45人比較細心,另外15人比較粗心;在數(shù)學成績不及格的40名學生中有10人比較細心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學成績及格

數(shù)學成績不及格

合計

比較細心

45

比較粗心

合計

60

100

(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關(guān)系?

參考數(shù)據(jù):獨立檢驗隨機變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(A)在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程為 (為參數(shù)), 是曲線上的動點, 為線段的中點,設(shè)點的軌跡為曲線.

(1)求的坐標方程;

(2)若射線與曲線異于極點的交點為,與曲線異于極點的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分數(shù)在80以上(含80)的同學獲獎.按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖(見下圖)

(Ⅰ)求所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)填寫下面的列聯(lián)表,能否有超過95%的把握認為“獲獎與學生的文理科有關(guān)”?

附表及公式:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),其中是自然對數(shù)的底數(shù).

(1)若上為單調(diào)函數(shù),求實數(shù)的取值范圍;

(2)若,求證: 有唯一零點的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查某高中學生每天的睡眠時間,隨即對20名男生和20名女生進行問卷調(diào)查.

(1)現(xiàn)把睡眠時間不足5小時的定義為“嚴重睡眠不足”,從睡眠時間不足6小時的女生中隨機抽取3人,求此3人中恰有一人為“睡眠嚴重不足”的概率;

(2)完成下面列聯(lián)表,并回答是否有的把握認為“睡眠時間與性別有關(guān)”?

參考公式: ,

臨界表值:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, 底面, 分別是的中點.

(Ⅰ)求證: 平面;

(Ⅱ)設(shè),求二面角大小的正弦值.

查看答案和解析>>

同步練習冊答案