【題目】為了調查某高中學生每天的睡眠時間,隨即對20名男生和20名女生進行問卷調查.

(1)現(xiàn)把睡眠時間不足5小時的定義為“嚴重睡眠不足”,從睡眠時間不足6小時的女生中隨機抽取3人,求此3人中恰有一人為“睡眠嚴重不足”的概率;

(2)完成下面列聯(lián)表,并回答是否有的把握認為“睡眠時間與性別有關”?

參考公式: ,

臨界表值:

【答案】(1). (2)見解析

【解析】試題分析:(1)由表中數(shù)據(jù)可知睡眠時間不足6小時的女生共有6人,其中睡眠嚴重不足的有2人,用古典概型可解。(2)根據(jù)表格填好列聯(lián)表,計算卡方,所以沒有90%的把握認為“睡眠時間與性別有關”。

試題解析:(1)睡眠時間不足6小時的女生共有6人,其中睡眠嚴重不足的有2人,記“至少有1個人睡眠嚴重不足”為事件A,則.

(2)2×2列聯(lián)表如下:

由上表可得, ,

因此,沒有90%的把握認為“睡眠時間與性別有關”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設人的某一特征(如眼睛的大小)是由他的一對基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個基因,假定父母都是混合性,:

(1)1個孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個孩子中至少有1個顯露顯性特征”,這種說法正確嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四個命題:

①在回歸分析中, 可以用來刻畫回歸效果, 的值越大,模型的擬合效果越好;

②在獨立性檢驗中,隨機變量的值越大,說明兩個分類變量有關系的可能性越大;

③在回歸方程中,當解釋變量每增加1個單位時,預報變量平均增加1個單位;

④兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于1;

其中真命題是:

A. ①④ B. ②④ C. ①② D. ②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1) 時,證明: ;

(2)當時,直線和曲線切于點,求實數(shù)的值;

(3)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者 , , , 和4名 , , ,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.

(Ⅰ)求接受甲種心理暗示的志愿者中包含但不包含的頻率.

(Ⅱ)用表示接受乙種心理暗示的女志愿者人數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, , 的中點.

(1)求證: ;

(2)設平面平面 , ,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某養(yǎng)雞場為檢驗某種藥物預防某種疾病的效果,取100只雞進行對比試驗,得到如下列聯(lián)表(表中部分數(shù)據(jù)丟失, , , , 表示丟失的數(shù)據(jù)):

工作人員記得.

(1)求出列聯(lián)表中數(shù)據(jù), , , , 的值;

(2)能否在犯錯誤的概率不超過0.005的前提下認為藥物有效?

參考公式: ,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機的發(fā)展,微信越來越成為人們交流的一種方式,某機構對使用微信交流的態(tài)度進行調查,隨機調查了50人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如表:

年齡(歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;

年齡不低于45歲的人

年齡低于45歲的人

合計

贊成

不贊成

合計

(2)若對年齡分別在, 的被調查人中各抽取一人進行追蹤調查,求選中的2人中至少有一人贊成使用微信交流的概率.

參考公式: ,其中

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線 ,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系.

(1)求曲線的普通方程和曲線的極坐標方程;

(2)若射線)與曲線 分別交于, 兩點,求.

查看答案和解析>>

同步練習冊答案