A. | 4 | B. | 3 | C. | 2 | D. | 0 |
分析 由題意列出不等式組,畫出可行域,得到使目標(biāo)函數(shù)取得最大值的最優(yōu)解,代入目標(biāo)函數(shù)可得ab=4,然后利用基本不等式求最值.
解答 解:設(shè)P(x,y)為封閉區(qū)域中的任意點,
則P(x,y)滿足約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y+4≤0}\\{x≥0,y≥0}\end{array}\right.$,
可行域如圖所示:
目標(biāo)函數(shù)的最優(yōu)解為B(1,4),
依題意將B(1,4)代入z=abx+y(a>0,b>0)得最大值8,解得ab=4,
由基本不等得:$a+b≥2\sqrt{ab}=4$(當(dāng)且僅當(dāng)a=b=2時,等號成立),
∴a+b的最小值為4.
故選:A.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用基本不等式求最值,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 10π | C. | 16π | D. | $\frac{8}{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∧q為假命題,則p,q至少之一為假命題 | |
B. | 命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0” | |
C. | 若$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow$是真命題 | |
D. | 若am2<bm2,則a<b否命題是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com