【題目】空間四邊形ABCD中,AB=CD且異面直線AB與CD所成的角為30°,E,F(xiàn)為BC和AD的中點,則異面直線EF和AB所成的角為( )
A.15°
B.30°
C.45°或75°
D.15°或75°
科目:高中數(shù)學 來源: 題型:
【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當x∈[1,3]時,不等式 恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個不同的零點,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,橢圓C1: + =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2: ﹣ =1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,AC∥DE,AC與BD相交于H點.
(1)求證:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若不等式|2x﹣1|﹣|x+a|≥a對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的一個焦點與拋物線的焦點相同, ,為橢圓的左、右焦點.為橢圓上任意一點,△面積的最大值為1.
(1)求橢圓的方程;
(2)直線:交橢圓于,兩點.
(i)若直線與的斜率分別為,,且,求證:直線過定點,并求出該定點的坐標;
(ii)若直線的斜率時直線,斜率的等比中項,求△面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),函數(shù)f(x)=2x2+(x﹣a)|x﹣a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設函數(shù)h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com