【題目】某公司計劃投資A、B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資量的算術(shù)平方根成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤與投資量成正比例,其關(guān)系如圖2(注:利潤與投資量的單位:萬元).
(1)分別將A、B兩產(chǎn)品的利潤表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有10萬元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?
【答案】(1)A產(chǎn)品的利潤為,B產(chǎn)品的利潤為(2)當(dāng)A產(chǎn)品投入4萬元,B產(chǎn)品投入6萬元時,該企業(yè)獲得最大利潤為萬元
【解析】
(1)設(shè)投資x萬元,A產(chǎn)品的利潤為萬元,B產(chǎn)品的利潤為萬元,利用已知條件,結(jié)合函數(shù)的圖象求解函數(shù)的解析式即可.
(2)設(shè)A產(chǎn)品投入x萬元,則B產(chǎn)品投入萬元,設(shè)企業(yè)利潤為y萬元,由(1)得利用二次函數(shù)的性質(zhì)求解函數(shù)的最大值即可.
解(1)設(shè)投資x萬元,A產(chǎn)品的利潤為萬元,B產(chǎn)品的利潤為萬元,
依題意可設(shè),
由圖1,得,即,.
由圖2,得,即.
故,.
(2)設(shè)A產(chǎn)品投入x萬元,則B產(chǎn)品投入萬元,設(shè)企業(yè)利潤為y萬元,
由得
.
,.
當(dāng),即時,.
因此當(dāng)A產(chǎn)品投入4萬元,B產(chǎn)品投入6萬元時,該企業(yè)獲得最大利潤為萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 .
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點,若點的極坐標(biāo)為,直線經(jīng)過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中;
(Ⅰ)若函數(shù)在處取得極值,求實數(shù)的值,
(Ⅱ)在(Ⅰ)的結(jié)論下,若關(guān)于的不等式,當(dāng)時恒成立,求的值.
(Ⅲ)令,若關(guān)于的方程在內(nèi)至少有兩個解,求出實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1 ,正方形的邊長為分別是和的中點,是正方形的對角線與的交點,是正方形兩對角線的交點,現(xiàn)沿將折起到的位置,使得,連結(jié)(如圖2).
(1)求證:;
(2)求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實行二級階梯式水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的直角頂點在軸上,點,為斜邊的中點,且平行于軸.
(1)求點的軌跡方程;
(2)設(shè)點的軌跡為曲線,直線與的另一個交點為.以為直徑的圓交軸于、,記此圓的圓心為,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.
(1)求的取值范圍;
(2)試比較與的大小,并說明理由;
(3)設(shè)的兩個極值點為,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com