【題目】某企業(yè)生產(chǎn) , 兩種產(chǎn)品,根據(jù)市場調(diào)查與預測, 產(chǎn)品的利潤與投資關(guān)系如圖(1)所示; 產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤和投資單位:萬元).
(1)分別將 , 兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到 萬元資金,并將全部投入 , 兩種產(chǎn)品的生產(chǎn).問怎樣分配這 萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
【答案】(1);(2)投入 產(chǎn)品 萬元, 產(chǎn)品 萬元時,總利潤最大值為 萬元
【解析】試題分析:(1)對于A,當0≤x≤2時,因為圖象過(2,0.5)和原點,當x>2時,圖象過(2,0.5)和(3,1),可得函數(shù)的解析式;對于B,易知y=2 (x≥0).
(2)設投入B產(chǎn)品x萬元,則投入A產(chǎn)品(18-x)萬元,利潤為y萬元.分16≤x≤18時,0≤x<16時兩種情況求出函數(shù)的最大值,比較后可得答案.
試題解析:
(1) 對于 ,當 時,因為圖象過 ,所以 ,
當 時,令 ,因圖象過 和 ,得
解得 , ,故
對于 ,易知 .
(2) 設投入 產(chǎn)品 萬元,則投入 產(chǎn)品 萬元,利潤為 萬元.
若 時,則 ,則投入 產(chǎn)品的利潤為 ,投入 產(chǎn)品的利潤為 ,則 ,令 , ,
則 ,此時當 ,即 時, 萬元;
當 時, ,則投入 產(chǎn)品的利潤為 ,投入 產(chǎn)品的利潤為 ,則 ,令 , ,
則 ,當 時,即 時, 萬元;
由 ,
綜上,投入 產(chǎn)品 萬元, 產(chǎn)品 萬元時,總利潤最大值為 萬元.
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至處,此時測得其東北方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處.
(1)求此時該外國船只與島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行,為了將該船攔截在離島海里處,不讓其進入島海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與橢圓相交于兩點,與軸, 軸分別相交于點和點,且,點是點關(guān)于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.
(1) 若橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,求橢圓的方程;
(2)當時,若點平分線段,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為, 為坐標原點.
(1)求橢圓的方程和離心率.
(2)設點,動點在軸上,動點在橢圓上,且點在軸的右側(cè).若,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調(diào)查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:
分公司名稱 | 雅雨 | 雅魚 | 雅女 | 雅竹 | 雅茶 |
月銷售額(萬元) | 3 | 5 | 6 | 7 | 9 |
月利潤額(萬元) | 2 | 3 | 3 | 4 | 5 |
在統(tǒng)計中發(fā)現(xiàn)月銷售額和月利潤額具有線性相關(guān)關(guān)系.
(1)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤額與月銷售額之間的線性回歸方程;
(2)若該總公司還有一個分公司“雅果”月銷售額為10萬元,試估計它的月利潤額是多少?
(參考公式: , ,其中: , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點, 為坐標原點,點在橢圓上,線段與軸的交點滿足.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點、,當,且滿足時,求的面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com