過點(diǎn)(1,2)且與直線x-2y-2=0平行的直線方程是
 
考點(diǎn):直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:由平行關(guān)系可設(shè)所求直線的方程為:x-2y+c=0,代點(diǎn)可得c的方程,解得c即可得所求.
解答: 解:由平行關(guān)系可設(shè)所求直線的方程為:x-2y+c=0,
∵直線x-2y+c=0過點(diǎn)(1,2),
∴1-2×2+c=0,解得c=3
∴所求直線的方程為x-2y+3=0
故答案為:x-2y+3=0
點(diǎn)評:本題考查直線的一般式方程與平行關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某簡諧運(yùn)動的圖象對應(yīng)的函數(shù)解析式為:y=
2
sin(2x-
π
4
).
(1)指出此簡諧運(yùn)動的周期、振幅、頻率、相位和初相;
(2)利用“五點(diǎn)法”作出函數(shù)在一個周期(閉區(qū)間)上的簡圖;
(3)說明它是由函數(shù)y=sinx的圖象經(jīng)過哪些變換而得到的.
【解】:(1)周期:
 
;振幅:
 
;頻率:
 
;相位:
 
;初相:
 

x
  2x-
π
4
0
sin(2x-
π
4
)
   y
(2)

(3)①先將函數(shù)y=sinx的圖象
 
  得到函數(shù)y=sin2x的圖象;②再將函數(shù)y=sin2x的圖象
 
 得到函數(shù)y=sin(2x-
π
4
)
的圖象;③最后再將函數(shù)y=sin(2x-
π
4
)
的圖象
 
得到函數(shù)y=
2
sin(2x-
π
4
)
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式(1+a)x2+(a-1)x+6>0的解集是{x|-3<x<1},解不等式3x2+(2-a)x+4a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面上,復(fù)數(shù)
3
(2-i)2
對應(yīng)的點(diǎn)到原點(diǎn)的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA,cos
B
2
,sinC成等比數(shù)列,則此三角形的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+2ay-1=0和直線(3a-1)x-ay-1=0平行,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U=R,A={x|-1≤x≤1},B={x|x-a<0},若滿足A⊆B,則實(shí)數(shù)a的取值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),P(ξ≤4)=0.84,則P(0≤ξ≤2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p、q,“?p為真”是“p∧q為假”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案