A. | ±$\frac{1}{2}$ | B. | ±$\frac{\sqrt{2}}{2}$ | C. | ±$\frac{\sqrt{3}}{2}$ | D. | ±1 |
分析 根據(jù)題意得出點(diǎn)Q、P的橫坐標(biāo)的差等于函數(shù)的周期,點(diǎn)R、Q的連線段的垂直平分線是函數(shù)圖象的一條對(duì)稱軸.由此設(shè)出P、R、Q三點(diǎn)的坐標(biāo),建立方程組解出其中一點(diǎn)的橫坐標(biāo)值,即可求出a的值.
解答 解:設(shè)P(x1,a),R(x2,a),Q(x3,a),
根據(jù)P、R、R為相鄰三點(diǎn),從左到右為P、R、R,且PR=3RQ,
如圖所示;
則$\left\{\begin{array}{l}{{x}_{3}{-x}_{1}=\frac{2π}{ω}}\\{\frac{1}{2}{(x}_{2}{+x}_{3})•ω+φ=\frac{π}{2}+kπ}\end{array}\right.$,(k∈Z)…①
由PR=3RQ,得x2-x1=3(x3-x2),…②
由①②聯(lián)立,解得x2=$\frac{π}{4ω}$-$\frac{φ}{ω}$+$\frac{kπ}{ω}$,(k∈Z)
因此,a=f(x2)=sin(ωx2+φ)=sin($\frac{π}{4}$+kπ)=±$\frac{\sqrt{2}}{2}$.
故選:B.
點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,也考查了數(shù)形結(jié)合的解題方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow$=(3,2),|$\overrightarrow{a}$|=5 | B. | $\overrightarrow$=(-3,2),|$\overrightarrow{a}$|=13 | C. | $\overrightarrow$=(3,-2),|$\overrightarrow{a}$|=5 | D. | $\overrightarrow$=(3,-2),|$\overrightarrow{a}$|=$\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | λ=$\frac{1}{3}$ | B. | μ=$\frac{1}{3}$ | C. | λ=3 | D. | μ=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com