【題目】已知函數(shù),,若對(duì)任意給定的,關(guān)于的方程在區(qū)間上總存在唯一的一個(gè)解,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

【答案】B

【解析】分析:由題意可以把問(wèn)題轉(zhuǎn)化為求函數(shù)f(x)和函數(shù)g(x)的值域,并有題意轉(zhuǎn)化為兩個(gè)函數(shù)的值域的關(guān)系問(wèn)題.

詳解:解f′(x)=6ax2﹣6ax=6ax(x﹣1),

①當(dāng)a=0時(shí),f(x)=1,g(x)=,顯然不可能滿足題意;

②當(dāng)a0時(shí),f'(x)=6ax2﹣6ax=6ax(x﹣1),

x,f′(x),f(x)的變化如下:

又因?yàn)楫?dāng)a0時(shí),g(x)=﹣x+上是減函數(shù),

對(duì)任意m[0,2],g(m)[+]

由題意,必有g(m)maxf(x)max,且1﹣a0,

,解得:a1,

③當(dāng)a0時(shí),g(x)=﹣x+上是增函數(shù),不合題意;

綜上,a[,1),

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近五年的產(chǎn)量統(tǒng)計(jì)如下表:

(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程,并由所建立的回歸方程預(yù)測(cè)該地區(qū)2018年該農(nóng)產(chǎn)品的產(chǎn)量;

(Ⅱ)若近五年該農(nóng)產(chǎn)品每千克的價(jià)格(單位:元)與年產(chǎn)量(單位:萬(wàn)噸)滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.求年銷售額最大時(shí)相應(yīng)的年份代碼的值,

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的計(jì)算公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)上的單調(diào)性,并證明你的結(jié)論.

3)是否存在實(shí)數(shù),對(duì)于任意,不等式恒成立,若存在,求出實(shí)數(shù)的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

(1)當(dāng)時(shí),若對(duì)任意均有成立,求實(shí)數(shù)的取值范圍;

(2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,其中.

①求證:;

②當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線和曲線交于兩點(diǎn)之間),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知正三棱錐,中點(diǎn),過(guò)點(diǎn)作截面分別于點(diǎn),,且,分別為,的中點(diǎn).

(1)證明:平面

(2)若,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的有________(只填序號(hào))

①若直線與平面有無(wú)數(shù)個(gè)公共點(diǎn),則直線在平面內(nèi);

②若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),lα;

③若兩條異面直線中的一條與一個(gè)平面平行,則另一條直線一定與該平面相交;

④若直線l與平面α平行,l與平面α內(nèi)的直線平行或異面;

⑤若平面α∥平面β,直線aα,直線bβ,則直線ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造了中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動(dòng)員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過(guò)個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動(dòng)員順利通過(guò)每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動(dòng)員只有在摔倒或到達(dá)終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動(dòng)員滑行最后一圈時(shí)在這一圈內(nèi)已經(jīng)順利通過(guò)的交接口數(shù).

(1)求該運(yùn)動(dòng)員停止滑行時(shí)恰好已順利通過(guò)個(gè)交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)

是棱的中點(diǎn),平面與棱交于點(diǎn).

1)求證:;

2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案