【題目】在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線和曲線交于兩點(在之間),且,求實數(shù)的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,D,E分別為的中點,點F為線段上的一點,將沿折起到的位置,使,如圖2.
(1)求二面角
(2)線段上是否存在點,使平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),且f(2)=.
(1)求實數(shù)m和n的值;
(2)求函數(shù)f(x)在區(qū)間[-2,-1]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形中,點,分別為邊,的中點,將沿所在直線進行翻折,將沿所在直線進行翻折,在翻折的過程中,
①點與點在某一位置可能重合;②點與點的最大距離為;
③直線與直線可能垂直; ④直線與直線可能垂直.
以上說法正確的個數(shù)為( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,若對任意給定的,關(guān)于的方程在區(qū)間上總存在唯一的一個解,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象所有點向右平移個單位,再縱坐標(biāo)不變,橫坐標(biāo)擴大到原來的倍,得到函數(shù)的圖象.
(1)求的解析式;
(2)在區(qū)間上是否存在的對稱軸?若存在,求出,若不存在說明理由?
(3)令,若滿足,且的終邊不共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過點作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com