20.在△ABC中,AC=7,∠B=$\frac{2π}{3}$,△ABC的面積S=$\frac{15\sqrt{3}}{4}$,則邊AB的長為3或5.

分析 由,∠B=$\frac{2π}{3}$,以及已知三角形的面積,利用三角形的面積公式求出AB•BC=15,再利用余弦定理即可求出AB2+BC2=34,聯(lián)立解出AB即可.

解答 解:∵S△ABC=$\frac{15\sqrt{3}}{4}$,∠B=$\frac{2π}{3}$,
∴$\frac{1}{2}$AB•BC•sinB=$\frac{15\sqrt{3}}{4}$,即$\frac{1}{2}$AB•BC•$\frac{\sqrt{3}}{2}$=$\frac{15\sqrt{3}}{4}$,
∴AB•BC=15,①
由余弦定理知cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2•AB•BC}$,即-$\frac{1}{2}$=$\frac{A{B}^{2}+B{C}^{2}-49}{30}$,
∴AB2+BC2=34. ②
聯(lián)立①②,解得:AB=3或AB=5.
故答案為:3或5.

點(diǎn)評 本題考查三角形中邊長的求法,是中檔題,解題時要認(rèn)真審題,注意余弦定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知圓C1:(x+8)2+(y+6)2=25和圓C2:(x-4)2+(y-6)2=25.
(1)若直線1過原點(diǎn),且被C2截得的弦長為6,求直線l的方程;
(2)是否存在點(diǎn)P滿足:過點(diǎn)P的無窮多對互相垂直的直線l1和12,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,若存在求出點(diǎn)P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知:函數(shù)f(x)=5sinxcosx+5$\sqrt{3}$sin2x-$\frac{5}{2}$$\sqrt{3}$(x∈R)
(1)求f(x)的最小正周期;
(2)求f(x)的單遞增區(qū)間;
(3)求f(x)圖象的對稱軸、對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\sqrt{3}$sinx-cosx(x∈[0,π])的單調(diào)遞減區(qū)間是( 。
A.[0,$\frac{2π}{3}$]B.[$\frac{π}{2}$,$\frac{2π}{3}$]C.[$\frac{2π}{3}$,π]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\sqrt{3}$sinx-acosx的圖象的一條對稱軸是x=$\frac{5π}{3}$,則g(x)=asinx+cosx=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$)的初相是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=2{cos^2}x-2\sqrt{3}sinxcosx$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)-m=1在$[{-\frac{5π}{12},0}]$上有兩個不等實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-4+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ) 寫出直線l和曲線C的普通方程;
(Ⅱ) 已知點(diǎn)P為曲線C上的動點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x|,
(1)解不等式f(x-2)≤2-f(x);
(2)證明:對任意實(shí)數(shù)x≠0,有$f({\frac{1}{x}-1})+f({x+1})≥2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.以下關(guān)于函數(shù)f(x)=$\frac{2x-1}{x-3}$(x≠3)的敘述正確的是(  )
A.函數(shù)f(x)在定義域內(nèi)有最值
B.函數(shù)f(x)在定義域內(nèi)單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于點(diǎn)(3,1)對稱
D.函數(shù)y=$\frac{5}{x}$的圖象朝右平移3個單位再朝上平移2個單位即得函數(shù)f(x)

查看答案和解析>>

同步練習(xí)冊答案