某校學(xué)生會(huì)組織部分同學(xué),用“10分制”隨機(jī)調(diào)查“陽(yáng)光”社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取12名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!保髲倪@12人中隨機(jī)選取3人,至多有1人是“極幸!钡母怕剩
(3)以這12人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選2人,記ξ表示抽到“極幸!钡娜藬(shù),求ξ的分布列及數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,莖葉圖,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(1)由莖葉圖能求出這組數(shù)據(jù)的眾數(shù)和中位數(shù).
(2)利用互斥事件加法公式能求出至多有1人是“極幸福”的概率.
(3)ξ的可能取值為0,1,2.分別求出相應(yīng)的概率,由此能求出ξ的分布列及數(shù)學(xué)期望.
解答: 解:(1)由莖葉圖知這組數(shù)據(jù)的眾數(shù)為:86,中位數(shù):87.…2分
(2)設(shè)Ai表示所取3人中有i個(gè)人是“極幸!保
至多有1人是“極幸!庇洖槭录嗀,
P(A)=P(A0)+P(A1)=
C
3
9
C
3
12
+
C
1
3
C
2
9
C
3
12
=
48
55
.…6分
(3)ξ的可能取值為0,1,2.
P(ξ=0)=(
3
4
)2=
9
16

P(ξ=1)=
C
1
2
×
1
4
×
3
4
=
3
8
,
P(ξ=2)=(
1
4
)2=
1
16
,….10分
∴ξ的分布列為:
ξ012
P
9
16
3
8
1
16
E(ξ)=0×
9
16
+1×
3
8
+2×
1
16
=
1
2
.…12分
點(diǎn)評(píng):本題考查眾數(shù)、中位數(shù)的求法,考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,注意莖葉圖的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是正實(shí)數(shù),n是正整數(shù),則函數(shù)f(x)=
(x2n-a)(b-x2n)
(x2n+a)(b+x2n)
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)ft(x)=(x-t)2-t(t∈R),設(shè)a<b,f(x)=
fa(x),fa(x)<fb(x)
fb(x),fa(x)≥fb(x)
,若函數(shù)y=f(x)+x+a-b有三個(gè)零點(diǎn),則b-a的值為( 。
A、2+
5
B、2+
3
C、
5-2
D、2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)定義域?yàn)镽,若f(x)=f(4-x),且當(dāng)x∈(-∞,2)時(shí),函數(shù)f(x)為增函數(shù),設(shè)a=f(0),b=f(
1
2
),c=f(3),則(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-x2上的點(diǎn)到直線4x+3y-8=0距離的最小值是( 。
A、
4
3
B、
7
5
C、
8
5
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

口袋中有紅、白、黃、黑共四個(gè)小球,其質(zhì)量相等、大小相同.從中有放回的先后各取一個(gè)球.
(1)寫出所有不同的基本事件;
(2)求取出兩球中含有白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(Ⅰ)若m=5,“p或q”為真命題,“?p”為真命題,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若q是p的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ABCD為直角梯形,∠DAB=∠ABC=90°,AB=BC=a,AD=2a,PA⊥平面ABCD,PA=a,
(1)求證:PC⊥CD;
(2)求點(diǎn)B到直線PC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知邊長(zhǎng)為2的正方形ABCD所在平面外有一點(diǎn)P,PA⊥平面ABCD,且PA=2,E是PC的中點(diǎn).
(1)證明:平面BDE⊥平面PAC;
(2)求:BE與平面ABCD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案