8.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{({x-1})^2}({x<2})\\ \frac{2}{x}\;\;\;\;\;\;\;\;\;({x≥2})\end{array}\right.$,則f(x)的單調(diào)增區(qū)間是[1,2).

分析 由題意,x<2,函數(shù)的單調(diào)增區(qū)間為[1,2),x≥2,函數(shù)單調(diào)遞減,即可得出結(jié)論.

解答 解:由題意,x<2,函數(shù)的單調(diào)增區(qū)間為[1,2),x≥2,函數(shù)單調(diào)遞減.
故答案為[1,2).

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\sqrt{{x^2}-2x}$的單調(diào)遞減區(qū)間為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{x+1}|\;\;\;x≤0\\|{lgx}|\;\;\;\;\;x>0\end{array}\right.$,若方程f(x)=a有四個(gè)不同的實(shí)根x1,x2,x3,x4.則x1+x2+x3+x4的取值范圍為($-\frac{9}{10}$,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)$y=\sqrt{k{x^2}+kx+3}$的定義域?yàn)镽,則k的取值范圍是( 。
A.(-∞,0]∪[12,+∞)B.(-∞,0)∪(12,+∞)C.(0,12)D.[0,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若集合A={x|x2-mx+3=0,x∈R},B={x|x2-x+n=0,x∈R},且A∪B={0,1,3},則實(shí)數(shù)m,n的值分別是m=4,n=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.扇形的圓心角為$θ=\frac{3}{2}$弧度,半徑為4cm,則扇形的面積是12cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線m、n與平面α、β,則下列說(shuō)法正確的是( 。
A.若m∥α,n∥α,則m∥nB.若m∥α,n⊥α,則n⊥mC.若m⊥α,n⊥β,則α⊥βD.若m⊥α,n⊥β,則n⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等式:
cos261°+sin231°+cos61°sin31°=a
cos266°+sin236°+cos66°sin36°=a
cos220°+sin210°+cos20°sin(-10°)=a
cos28°+sin222°+cos8°sin(-22°)=a
(Ι)根據(jù)以上所給的等式歸納出一個(gè)具有一般性的等式,并指出實(shí)數(shù)a的值
(Ⅱ)證明你寫(xiě)的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-bx (a,b∈R).若y=f(x)圖象上的點(diǎn)(1,-$\frac{11}{3}$)處的切線斜率為-4.
(1)求a、b的值;
(2)求y=f(x)的極大值;
(3)對(duì)?x∈[-2,3],都有f(x)-k<0,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案