19.已知雙曲線C的兩焦點為F1,F(xiàn)2,離心率為$\frac{4}{3}$,拋物線y2=16x的準線過雙曲線C的一個焦點,若以線段F1F2為直徑的圓與雙曲線交于四個點Pi(i=1,2,3,4),|PiF1|•|PiF2|=( 。
A.0B.7C.14D.21

分析 求出雙曲線、圓的方程,聯(lián)立求出|y|=$\frac{7}{4}$,利用面積關(guān)系,即可得出結(jié)論.

解答 解:由題意,c=4,a=3,b=$\sqrt{7}$,雙曲線的方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{7}$=1,
與圓x2+y2=16,可得|y|=$\frac{7}{4}$,
∴|PiF1|•|PiF2|=$8×\frac{7}{4}$=14,
故選C.

點評 本題考查雙曲線、圓的方程,考查面積的計算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:已知角α終邊上的一點P(7m,-3m)(m≠0).
(Ⅰ)求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值;
(Ⅱ)求2+sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.經(jīng)過點A(-1,4)且在x軸上的截距為3的直線方程是( 。
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=x+a,g(x)=x+$\frac{4}{x}$,若?x1∈[1,3],?x2∈[1,4],使得f(x1)≥g(x2),則實數(shù)a的取值范圍為( 。
A.a≥1B.a≥2C.a≥3D.a≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項和為Sn,且a3+a4+a5+a6+a7=20,則S9=( 。
A.18B.36C.60D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和Sn=n2-n(n∈N*).正項等比數(shù)列{bn}的首項b1=1,且3a2是b2,b3的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)若cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合Sn={1,2,3,…2n-1},若X是Sn的子集,把X的所有元素的乘積叫做X的容量(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.其中Sn的奇子集的個數(shù)為( 。
A.$\frac{{{n^2}+n}}{2}$B.2n-1C.2nD.22n-1-2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x3-3x2,g(x)=ax2-4.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若對任意的x∈[0,+∞),都有f(x)≥g(x),求實數(shù)a的取值范圍;
(Ⅲ)函數(shù)f(x)的圖象是否為中心對稱圖形,如果是,請寫出對稱中心;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,AC=5,$\frac{1}{tan\frac{A}{2}}$+$\frac{1}{tan\frac{C}{2}}$-$\frac{5}{tan\frac{B}{2}}$=0,則BC+AB=(  )
A.6B.7C.8D.9

查看答案和解析>>

同步練習冊答案