【題目】下列命題中不正確命題的個(gè)數(shù)是( )
①過(guò)空間任意一點(diǎn)有且僅有一個(gè)平面與已知平面垂直
②過(guò)空間任意一條直線有且僅有一個(gè)平面與已知平面垂直
③過(guò)空間任意一點(diǎn)有且僅有一個(gè)平面與已知的兩條異面直線平行
④過(guò)空間任意一點(diǎn)有且僅有一條直線與已知平面垂直
A.1 B.2
C.3 D.4
【答案】C
【解析】
試題分析:考察正方體中互相垂直的線和平面.對(duì)于①:過(guò)空間任意一點(diǎn)不是有且僅有一個(gè)平面與已知平面垂直;如圖中平面和平面與平面垂直;故錯(cuò);對(duì)于②:過(guò)空間任意一條直線有且僅有一個(gè)平面與已知平面垂直;這是錯(cuò)誤的,如圖中,已知平面和平面與平面垂直;故錯(cuò);對(duì)于③:過(guò)空間任意一點(diǎn)不是有且僅有一個(gè)平面與已知的兩條異面直線平行;如圖中,過(guò)的與與都平行的平面就不存在;故錯(cuò);對(duì)于④:過(guò)空間任意一點(diǎn)有且僅有一條直線與已知平面垂直是正確的.故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有兩個(gè)相異實(shí)根,,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)討論方程根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),作了初步處理,得到下表:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 9 |
發(fā)芽率(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于26”的概率;
(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出關(guān)于的線性回歸方程,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).
附:回歸方程中的斜率和截距最小二乘法估計(jì)公式分別為:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.
(1)記“函數(shù)為上的偶函數(shù)”為事件,求事件的概率;
(2)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,,又平面,且,點(diǎn)在棱上,且.
(1)求異面直線與所成的角的大小;
(2)求證:平面;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司擬投資開發(fā)某項(xiàng)新產(chǎn)品,市場(chǎng)評(píng)估能獲得10~1 000萬(wàn)元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1萬(wàn)元,同時(shí)不超過(guò)投資收益的20%.
(1) 設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為f(x),試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)方案的函數(shù)模型f(x)的基本要求;
(2) 公司能不能用函數(shù)f(x)=+2作為預(yù)設(shè)的獎(jiǎng)勵(lì)方案的模型函數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長(zhǎng)為6的等腰直角三角形,俯視圖是正方形.
(Ⅰ)請(qǐng)畫出該幾何體的直觀圖,并求出它的體積;
(Ⅱ)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長(zhǎng)為6的正方體ABCD—A1B1C1D1? 如何組拼?試證明你的結(jié)論;
(Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形,,平面⊥平面,⊥平面,點(diǎn)為的中點(diǎn),連接.
(1)求證:平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com